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1. INTRODUCTION

The present study is concerned with the construction of Hotine's (wO,N)

coordinate system as used in the three-dimensional flat space, and, especially,

with the question as to whether this construction may or may not be gencrallzcd

to a three-dimensional curved Riemannian space. In (Hotine. 1969]. henceforth

abbreviated as [H], the (w,O,N) coordinate system is built on the notion of

N-surfaces, each defined by a certain constant value of the coordinate N, which

can be identified with equipotential surfaces of the earth's gravity field.

Statements found in §1-19, §15-2, and §17-33 of [H] imply that N is a scalar

invariant (independent of the choice of a coordinate system), that it is a

single-valued, continuous, and differentiable function of position throughout a

region of space considered, and that within this region, adjacent normals to any

given N-surface do not intersect. When, In the following, we use the attribute

"well-behaved" for the scalar N. these are the qualities we will have in mind.

As is explained in §12-1 through §12-10 of [H], the other two space

coordina.es in Hotine's system are the independent scalars w (longitude) and

(latitude), which are functions of the normal to a given N-surface at a given

point. A well-behaved scalar N In a region considered implies that there are no

singular points in the (w,@,N) coordinate system. i.e., that there are no

distinct points having Identical coordinates Such a well-behaved scalar N is

sometimes interpreted as giving rise to non-intersecting, convex surfaces in

that region.

With regard to all points on the earth's surface, some investigat3rs

suggest the adoption of a coordinate system (w,0, Igrad NI), the usefulness of

which they justify by the existence of singular points in the (w,,N) system.

However, since we are not concerned with the extent of regions where the system

(w.O,N) is suitable, we do not address this proposition. The derivations in the

present study, focusing on the theoretical question with regard to a potential

admissibility of the system (w,,N) for a curved space, pertain to an

infinitesimal neighborhood of a given point P. In this neighborhood, N Is

assumed to be well-behaved. If the feasibility of the (a,0,N) system in this

neighborhood under the stipulation of a curved space Is established, a following

step would be to validate the system for finite regions. If the system is not

1



feasible in this neighborhood, the outcome of the analysis Is declared negative

and the investigation terminates.

The feasibility study of the extension of the (w.O.N) coordinate system to

a curved space is facilitated by the fact that the scalar N can be accepted as

the third space coordinate whether the space is flat or curved. This stems from

the tensor equation

N = N,

rs sr

valid, under the usual assumptions about N. at any point of a region of space

considered (here it is needed only within an infinitesimal neighborhood of P).

The above equality stems from the first and second covariant derivatives of a

scalar (and the first covariant derivatives of a vector) being unaffected by the

curvature of the space. Since this type of formula will be the basis for

acceptability of a given quantity as a coordinate, the scalar N (which has

already qualified) will not be subject to further scrutiny. On the other hand.

the question arises as to whether w and 0 could under certain circumstances be

admissible as the other two space coordinates in a curved space, similar in this

respect to N, or whether they are admissible as such coordinates strictly in the

flat space. This question will be answered as a by-product of the analysis

concerned with the generalization of o and 0 to G and H. which are called

respectively the generalized longitude and latitude.

The approach we choose is admittedly unusual. In practice, one usually

designs suitable coordinates in a two-, three-, or higher-dimensional space

whose characteristics are known. However, here we postulate that the quantities

G and H are admissible as coordinates, and examine what this postulate entails

for a three-dimensional space in terms of the covariant Riemann-Christoffel

tensor and its spatial derivatives. Subsequently, we specialize G and H to W

and 0. and examine whether the covariant Riemann-Christoffel tensor and all of

its spatial derivatives are required to be zero. In the affirmative, we

conclude that w and 0 can exist as coordinates only in the flat space. This, in

fact, would represent the negative outcome of the feasibility study of extending

the (w.0.N) coordinate system to a curved space.

As we have indicated, in Chapter 12 Hotine [19691 constructs his (W.,,N)

coordinate system fcr use in the flat p However, he considers certIn

equations related to the construction of his coordinate system as being valid
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only in the flat space, whereas it will be shown later In this Introduction that

such equations could be valid in a curved space as well. This. In fact, has led

above to the challenging question as to whether the coordinates W and 0 could,

by chance, be admissible in some class of curved spaces, and hence to the task

referred to as "feasibility study". Another challenging task is to approach the

problem via generalized latitude and longitude, task that may be of interest in

its own right.

Although a lower-dimensional analysis is not likely to provide reliable

guidance for the present feasibility study, such analysis was undertaken for the

sake of interest. The role of the flat space was taken by a plane, the role of

an N-surface was taken by an N-curve, and the role of the coordinates W and 0

was taken by the coordinate 4. In analogy to Hotine's system, the coordinate 4

is the angle between a "base" vector C considered at a given point P on the N-

curve, and the outward-drawn normal to this curve at P. (Since N is assumed to

be well-behaved, there are no singular points in the 0,N coordinates.) Upon

using a lower-dimensional analogue of the analysis carried out in the subsequent

chapters, the condition for 4, being admissible as a coordinate In the

neighborhood of P turns out to be Ra5ap 6=-0. where R apr is the

covariant Riemann-Christoffel tensor in two dimensions, £ Is the unit tangent to

the N-curve, and j is the normal to the N-curve, all associated with P. By

virtue of §5-20 in [H], this condition translates Into K=O, where K is the

Gaussian curvature. However, K=O allows for developable surfaces (e.g.. a

uylinde.j. Although such surfaces are not flat and cannot be expressed by

Cartesian coordinates, they do not exclude 4 as a coordinate. ihus. d IuWti-

dimensional analysis has not eliminated the possibility that a class of curved

spaces might exist, where w and 0 would be acceptable as coordinates (N being

acceptable by definition).

We remark that the approach chosen for the present study relies heavily on

the covariant Riemann-Christoffel tensor. In §5-5 of [H], this fourth-order

tensor is called the "covariant form" of the Riemann-Christoffel tensor; the

latter is presented In §5-3 [ibid]. For the sake of brevity, the Rlemann-

Christoffel tensor will be called here the R-tensor, and the covariant Rlemann-

Chrlstoffel tensor will be called the covariant R-tensor. We Illustrate the

importance and usefulness of these tensors In Section A.2 of Appendix A.



Throughout the analysis, Hotine's notation for these and other tensors, !ndices,

etc.. will be adhered to.

In order to explain, along general lines, the link between the coordinates

w and 0 of the (w, ,N) system on one hand and the covarlant R-tensor on the

other, we recall that according to Chapter 12 of [H], w and 0 are determined

with the aid of the orthonormal "base" vectors A, B, and C. If W and 0 are to

be coordinates not only at a given point, denoted P. but at neighboring points

as well, a question arises with regard to the parallel transport, or possibly

some other kind of transport, of A, B, and C from the point P. In [H] the base

vectors emanate from the known point called "origin", but by "irtue of the

parallel transport in the flat space, they could equally well emanate from P or

any other point. Since here we work with the neighb3rhood of P. it is expedient

to consider the base vectors as emanating from P. The question of transporting

A, B, and C is related to the quality of the space in the neighborhood of P

(along the N-surface at P as well as along neighboring N-surfaces), which, in

turn, is related to the covariant R-tensor in the neighborhood of P, or,

equivalently, to the covariant R-tensor and its spatial derivatives at P. If

the space is flat, this tensor is zero at all points of the space, or.

equivalently, this tensor and all of its spatial derivatives are zero at P.

The st-tement of equivalence between the covariant R-tensor being zero at

different points in the space, and this tensor and all its spatial derivatives

being zero at P, is rooted in the consideration that this and other tensors can

be exjie 3sed at various locations via thp Taylor-series expansion from P. Such

an expansion has an important role to play in the present study, and is treated

in suffic'int detail in Appendix A. Since an expression for tensor components

at P' based on tensor components at P pertains to distinct points by definition,

the equality sign in the Taylor series does not indicate a tensor equation, but

merely a collection of equalities for individual components. However, that such

a collection of equalities does not represent a tensor equation does not detract

from its usefulness.

We illustrate the above discussion with a simple example in a two-

dimenslon&l flat space, i.e.. a plane. The coordinates in this plane are chosen

to be r (distance from the origin) and 0 (angle from a given axis); thus, the

coordinate system is represented by (ua )(r,). The metric in these

coordinates is ds 2=dr 2+r2 dO 2  implying the metric tensor In matrix notation:
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(a [ r 21
r _

which is assumed to be valid at the point P. Since for the point P' we have
2 )2

r' =(ri-Ar) , where Ar=r'-r. it follows that

[a;,) = L0 r2] 2r~r] L[ r2]

But this is precisely the equality one obtains when proceeding via the Taylor

series as outlined in Section A.1 of Appendix A. except that here the coordinate

system is not locally Cartesian at P (i.e., [a a] identity matrix). This

equality is derived in detail in Appendix B.

We now return to the coordinates w and 0 of the (w, .N) system, and show

that certain relations used in [H] do not apply strictly in the flat space,

which leaves open the question of additional possibilities. We start with the

argument that if one were working in a general Riemannian space, one could still

use Hotine's orthonormal base vectors A. B. and C, and consider them in a

locally Cartesian coordinate system at P. This would be sufficient to produce

the three tensor equations implicit in the development of Chapter 12 in [H]:

A = B = C =0. (1)
rs rs rs

where Ars is obtained by the covarlant differentiation of A r , etc.. and where

the covariant components of A, B. and C In the above-mentioned local system are

A =(1,0,0). B =(0,1.0), and C =(0,0,1). Since the tensor equations representedr r r

by (1) stem from the definition of a locally Cartesian system, which is

admissible in the flat space as well as In curved spaces, they. alone, are

inconsequential with regard to the flatness of the space. Accordingly, their

use in the derivations leading to Hotine's equations (12.046,047) for ar and 0r

does not restrict these results to the flat space.

It is thus apparent that the same formulas giving wr and 0r would have been

obtained even if the space were known to be curved. An identical statement can

be made also with regard to equations (12.014--016) in (H] giving A rs' rs" and

Vrs' where A, p, and P form an orthonormal triad, with A and M being tangent to

the N-surface and v being an outward-pointing normal. (These and all the other

tensor equations in this study are considered at P, where they are valid in any
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coordinates.) Since much of the development In §12-88 through §12-94 Is based

on the over-restrictive assumption that the formulas for 4 rsA prs' and 'rs apply

only in the flat space, Chapter 12 of [H] is incapable of formulating sufficient

conditions for N-surfaces to be embedded in the flat space. We will return to

considering w and 0 in the flat space in conjunction with the integrability

conditions, and first present a short discussion pertaining to the flat-space

characteristics in terms of Hotine's vectors A, B, and C.

The above space ambiguity is linked to the limitations of (1), which merely

states that the system associated with A, B, and C is Cartesian to a first

order. i.e., Cartesian at P and in its immediate neighborhood, and bears no

relationship to the curvature of the space. (As is indicated in §5-8 of [H] and

described in Section A.1 of Appendix A, if, in the Taylor-series expansion of

the metric tensor from P. the term linear in coordinate differences is missing,

the coordinate system is called Cartesian to a first order, if also the

quadratic term is missing, the coordinate system is called Cartesian to a second

order: etc.) The flatness of the entire space is expressed through further

tensor equations in addition to (1), obtained by covariant differentiation as

Arst B rst = rst 0 , (2)

Arstu B rstu = rstu 0 (3)

etc. Section A.3 of Appendix A shows that equation (2) is equivalent to

krst = rts (4)

where k is a general vector in space. The derivation of the Mainardi-Codazzi

equations in (6.21) and later in (8.23) of [H] makes use of the above formula

(4) specialized for P. But even if (4) were not specialized, the local system

could be considered Cartesian only to a second order if (3), etc., did not hold

true. The use of such a Cartesian system would be confined to a relatively

small neighborhood of P.

An arbitrary differentiable scalar function of position, denoted F, is

admissible as a coordinate In a given space If It fulfills three integrability

conditions that Zund (1990] calls "commutators". The commutators of F in a

general space can be derived upon using the symmetry of F in r and s. and are.rs
Indeed, equivalent to the condition F rs=F . In Chapter 12. Hotine attempted torssr

formulate six flat-space integrability conditions for his system, where the
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scalar functions of position w and 0 were intended as the first two coordinates.

He considered two of these conditions to be the Mainardi-Codazzi equations. He

formulated three further conditions, namely (12.138-140), and aggregated them

into the surface tensor equation (12.144). In §12-92, he concluded that the

sixth condition is represented by the symmetry of N
rs"

However, the three conditions just mentioned were derived upon assuming

that the formulas for Ars' Prs' and Prs are valid strictly In the flat space,

whereas we have seen that they involve only (1) but not (2), (3), etc., and

could thus be valid in other spaces as well. This finding is consistent with

the fact that the curvature of the space does not affect the first covariant

derivatives of vectors, here Ars' Prs' and Prs . A similar negative comment can

be made about the sixth condition, which does not involve any of (1), (2), (3),

etc. In particular, since the ordinary second-order partial derivatives commute

and the Christoffel symbols are symmetric in the lower indices regardless of the

kind of the space and of the kind of coordinates in use. it follows for any

space where N is a scalar Invariant (assumed well-behaved as usual) that

N = N . (5)

rs sr

which has been encountered earlier. Clearly, the flat space has no special

distinction in this regard. Finally, the remaining two conditions represented

by the Mainardi-Codazzi equations are weaker than (4), or, equivalently, weaker

than (2), which, in any event, allows for spaces other than the flat space.

The main outcome of the introductory discussion can be summarized as

follows. Chapter 12 of [H] is inconclusive as to the conditions under which the

coordinates w and 0 of the (a,O,N) system are restricted to the flat space.

Thus, a theoretical possibility of (o and 0 being admissible as the first two

coordinates in a general (curved) space will be investigated. The vehicle In

carrying out this task will be the generalized longitude and latitude, G and H.

The theoretical possibility just mentioned will be precluded If it is proved

that the covarlant R-tensor must be identically zero in a space where W and

are stipulated to be coordinates. Such a proof, or a counter-proof, is a major

goal of the present study.
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2. OUTLINE OF A "REVERSED" APPROACH

2.1 Role of the Covariant Riemann-Christoffel Tensor

In order to assess the admissibility of o and 0 as coordinates in the flat

space and to answer the questions raised in the Introduction, we undertake a

"reversed" approach, in which the space will be required to accommodate two

functions such as w and 0 postulated to be coordinates. The third coordinate

will always be N, a continuous differentiable scalar function of position, which

is defined to be an invariant in any space. Accordingly. (5) holds true by

definition. The designation "any space" or "general space" pertains here to a

Riemannian space with general curvature properties. i.e., the flat space or

curved spaces (in three dimensions). The two quantities postulated as

coordinates In some spaces are denoted G and H, and are called "parameters".

They are considered to be quite general differentiable functions satisfying the

commutators, or, equivalently, the conditions

G = G , H = H , (6ab)
rs sr rs sr

in a class of spaces. In such spaces they will be proper scalar Invariants and

will be admissible as coordinates. We postulate that (6a,b) hold true and

proceed to find out all we can about such a class of spaces.

The specialization of G and H for Hotine's coordinates w and 0 will take

place in the final stage of the analysis. For the most part, either of the

commutators in (6ab) is represented by

F = F , (7)

rs sr

where F is an almost arbitrary differentiable scalar function of position. In

the next chapter, the commutators will be derived from this symmetry condition.

which also supplies AF, the Laplacian of F, with little additional effort. The

main thrust of the present approach is the stipulation that the commutators

embody conditions on the space, In particular, on the covariant Rlemann-

Chrlstoffel tensor (covarlant R-tensor), rather than on the parameters G and H.

This tensor can be used to express the space In which G and H are admissible as

coordinates via the metric tensor constructed from the point P outwards. Such a

procedure begins upon stioulating a locally Cartesian coordinate system at P.

denoted (x r, r=1,2.3. By construction, the system (x r Is Cartesian to a first
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order, but it could also be Cartesian to a second, a third, etc., orders, or it

could be globally Cartesian, i.e., Cartesian to all orders.

The properties of {x r ) are reflected by the metric tensor expressed at

arbitrary points. This tensor can be found from the Taylor-series expansion of

grs' the metric tensor at P. the matrix form of which at P is [g rs]=I. The

expansion proceeds in terms of the Christoffel symbols (C-symbols) and their

partial derivatives with respect to the coordinates {x r). The C-symbols are

zero at P due to the definition of the system (x r}. Accordingly, the linear

term in the expansion of the metric tensor is missing, which is precisely what

makes the system "Cartesian to a first order". The quadratic term contains the

first-order partial derivatives of the C-symbols, the cubic term contains their

second-order partial derivatives, the next terms contains their third-order

partial derivatives together with their first-order partial derivatives, and so

on. If all orders of partial derivatives of the C-symbols are zero, the system

is globally Cartesian and vice versa. These derivatives can be determined from

the components of the covariant R-tensor and their partial derivatives, but are

not unique. In the absence of conflicting information we set them to zero as a

part of the strategy in constructing the system (xr ). This strategy has the

advantage of seizing every opportunity to make the system (x r } globally

Cartesian. If this actually occurs, one concludes that the space must be flat.

In general, the C-symbols are linked to the covariant R-tensor via the

Riemann-Christoffel tensor (R-tensor). In §5-6 of (Hi, the R-tensor is related

to the first-order partial derivatives of the C-symbols in a locally Cartesian

coordinate system that has been identified here by {x r), and at a point that has

been identified here by P. We elaborate and expand this subject in Section A.2

of Appendix A. In particular, in working with the system (x r) and considering

all the relations at P, we link both versions of the R-tensor and their partial

derivatives to each other, as well as to the partial derivatives of the C-

symbols, which, in turn, we link to the Taylor-series expansion of the metric

tensor. This approach shows how the covariant R-tensor can help to express the

space in a concrete manner.

In three dimensions the covariant R-tensor contains (except for possible

sign differences) only six distinct components. We thus need six independent

commutators featuring these components as unknowns. In general, the commutators

will yield the six components In terms of the parameters G and H. If these
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components all turn out to be zero at P, all components of the covariant R-

tensor must be zero and all of the first-order partial derivatives of the C-

symbols are admissible to be zero. In terms of the Taylor-series expansion of
the metric tensor, this indicates that (x r is Cartesian to a second order, and

could possibly be Cartesian to a higher order. If. in addition, the first-order

partial derivatives of six Independent components (and thereby of all

components) of the covariant R-tensor are likewise zero, similar reasoning

indicates that (x r is Cartesian to at least a third order. If they are not

zero, the system is Cartesian only to a second order.

r
Accordingly, the necessary and sufficient conditions for the system {xr) to

be globally Cartesian is contained in equation (A.19) of Appendix A, namely

R constant = 0 (8)

which Implies that the covarlant R-tensor and all of its spatial derivatives at

P are zero. The indices in (8) may be Interpreted to represent either all

components, or six independent components; the two interpretations are

mathematically equivalent. Due to the fact that a globally Cartesian coordinate

system may exist by definition only in the flat space, (8) represents the

necessary and sufficient conditions for the space to be flat.

In summary, the "reversed" approach pursued herein uses the commutators to

express six independent components of the covariant R-tensor and their partial

derivatives at P via the parameters G and H. This leads to restrictions on the

space where G and H are admissible as coordinates. If (8) holds true, the space

is necessarily flat and (xr ) represents a Cartesian coordinate system in this

space. If (8) does not hold true, the space Is curved and (xr ) is Cartesian

only to a certain order. The actual values of the components of the covariant

R-tensor and of their partial derivatives at P can serve to express the metric

tensor, in the coordinate system (xr), at arbitrary points in this space.

2.2 General Formulation of the Parameters G and H

In order to allow the analysis to proceed along the most general lines

possible, we impose only few broad conditions on the parameters G and H. The

latter are considered at the point P, where we have introduced a locally
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Cartesian coordinate system (xr) associated with the orthonormal triad A, B, C.

At the same point, we define another orthonormal triad A, p, v, where P is

perpendicular to the pertinent N-surface. Since the latter is defined via

N=constant (N being one coordinate of the system) regardless of whether the

space is flat or curved, the basic gradient relation, namely

N = nu , (9)
r r

is a tensor equation at P, valid in any space and in any coordinates (such as

the locally Cartesian coordinates, some general underlying coordinates, etc.).

The scalar n in (9) is the magnitude of the gradient vector N . The above-r

mentioned broad conditions on the parameters are stipulated to be of any kind

that allows the triad A, . v to be uniquely related to the triad A, B, C via G

and H. To illustrate one such possibility, we project the known vector P onto a

plane formed by two of the three axes A. B, C, denoting the unit vector in this

direction by v'. The oriented angle between one of these two axes and V' can

constitute one parameter, and the oriented angle between P' and P can constitute

the other. Since such a construction does not involve (second-order) covariant

differentiation, it can be used unaltered whether the space is flat or curved.

Conversely, G and H can uniquely determine the triad 2, , P. In the above

illustration, P is constructed by back-tracking the definlton of G and H.

These two parameters can then also express the plane perpendicular to V at P.

i.e., the plane tangent to the N-surface and containing A and p. As soon as one

of A and u is oriented with respect to a known direction in this plane, both

vectors A and p are uniquely expressed by the two parameters. The coordinates 0)

and 0 represent a special case in this illustration. In particular, the two

axes forming the plane Into which P is projected are A and B, and the axis used

for the orientation of P' is A. The first parameter, w, is the oriented angle

between A and v', and the second parameter, 0, is the oriented angle between V'

and P. With regard to the "known direction" in the plane tangent to the N-

surface, It is now materialized by the Intersection of the tangent plane with

the plane defined by v and C. The vector to be oriented with respect to this

direcLion Is A, and the orientation angle is zero. In Chapter 12 of [H], the

definition of w and 4 based on A, p, v can be provided in several ways from

(12.008), such as given by (12.003-005), and the unique determination of A, p, v

from w and 0 Is provided by equations (12.008) themselves. Here again, the

curvature of the space does not modify these procedures because it only affects

11



second- and higher-order covarlant derivatives of vectors, or third- and higher-

order covariant derivatives of scalars.

In general, the unique determination of A, p, and v by the parameters G and

H is represented by

Ar = f1Ar + f2Br +  f 3 Cr (1Oa)

Pr = g 1 Ar + g 2 Br + g3 C ,r (1ob)

V r = h1 Ar + h2Br + h3 Cr (10c)

where fi=fI (G,H), gi.gi(G,H), hi~hi(G,H); I=1,2,3. In compact notation, this

system of tensor equations, where the index r can also be raised, is written as

Or 91 92 93 Br(10')

The formula (10') can be regarded as a matrix equation, where each of A r , r r

and Ar ' B , C represents a row-vector of three elements. The transpose of the
rr r

matrix on the left-hand side of (10') would be written as [A, r  , r' ], where

each of A ,r p , r would now represent a column-vector of three elements. Thus,r r r
rwhen the quantities such as A ... or Ar , .. are written beneath each other

they represent row-vectors; when they are written next to each other they

represent column-vectors.

Since the triads A, p. P, and A, B, C are orthonormal, the matrix of

coefficients in (10') is orthogonal. In particular, the inverse of this matrix

equals its transform, i.e., this matrix pre- or post-multiplied by its transpose

yields the identity matrix. Accordingly, we are in the presence of the

following six independent constraints:

2 2 2 2 2 2fI + f2 , f3 = 1 91 + g2 + g3

f g1  + f 2 92 + f39 3 = 0 , glhI + g 21 2 + g3 h3 = 0

2 2 2
fIhI + f2h2 + f3h3 0 h 1 + h2 + h3

Whether the coordinate system {x r  is locally Cartesian (in a curved space)

or globally Cartesian (in the flat space), A r , B and C behave as constants

under the first-order covariant differentiation as implied by (1). Thus, in

12



conjunction with (10') giving A r  B , Cr in terms of A r pr' V r (via the
orthogonal matrix of coefficients), and with the above six constraints, (in

fact, their partial derivatives), after straightforward algebraic manipulations.

the covariant differentiation of A . pr' and vr from (]Oa-c) yields

rs 12 r 13 1r )s + (2r T13 r ) H (la)

= (-T2A + T 23 )G + (-T2' + T' Lr )H (11b)
r12r 23 r s 12Ar 23 ur "s

1rs r(-T13 Ar- T2 3 9r)Gs + (-T13 r - T23pr)Hs (11c)

where G --aG/ax s . H =aH/ax s , and whereS s

T (12 (3f 1 /aG)g 1 + (af 2 /aG)g 2 + (of 3 /aG)g 3 , (12a)

T13 = (afI/aG)h I + (af 2 /aG)h 2 + (af 3 /aG)h 3  (12b)

T 23  (agI/aG)h1 + (ag2 /aG)h 2 + (ag 3 /aG)h 3 ; (12c)

Tj2  (af1/aH)g + (af2/aH)g 2 + (af3/H 3 . (12a')

Ti3  (af 1 /aH)h + (af 2 /aH)h 2 + (af 3 /aH)h 3 , (12b')

T = (agI/aH)h1 + (ag 2 /aH)h 2 + (ag 3 /aH)h 3  (12c')

The three primed quantities have the structure of their unprimed counterparts,

except that H replaces G. Having formulated Ar. Pr' and Pr in terms of general

functions of G and H (above symbolized by fit g1l and h V i=1.2.3), and having

differentiated them covarlantly, we need to introduce curvatures associated with

A. p. and v before proceeding further.
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3. TENSOR INVARIANTS IN A GENERAL SPACE

3.1 Curvature Parameters

In following the usage by Hotine (1969] and Zuid [1990], we introduce five

curvature parameters of the system associated with N-surfaces, as well as three

additional curvatures. The curvature parameters are k V k2 - ti, T1, and r2 , and

the additional curvatures are al, a2' and F3" These quantities correspond to

the directions of the orthonormal triad A, p, v. In analogy to the terminology

"Hotine 3-leg" employed by Zund [1990]. we refer to this triad as the "general

3-leg" (here A and p are not constrained to Hotine's definition of A and P).

All of the above eight curvatures are identified as follows: k and k2 are

respectively the normal curvatures of the N-surface in the A and p directions;

are respectively the geodesic torsions of the N-surface in th:3e rcc.tions;

T1 and y2 are respectively the curvature constituents of the normal to the N-

surface in these directions; aI and a2 are respectively the geodesic curvatures

of N-surface curves in these directions; and, according to [Zund. 1990], s3 is

a complicated expression involving the geodesic torsions of the surface curves.

All of these curvatures are scalar invariants considered at P. They involve

(single) covarlant differentiation of A r r and vr , and subsequent double
r r r

contractions with some of the contravariant vectors A , A , and vr . Since no

double covariant differentiation of vectors takes place, these invariants are

unaffected by the curvature of the space.

Most of the formulas expressing these curvatures are adopted from Chapter 7

of [H]. upon replacing the notation k. k*. t. a. and * respectively by k1. k2,

t1 , o, and a2' and correspondingly replacing 2 and j by A and p. The formula

for a1 follows from Hotine's equation (7.04). while that for 02 can be derived

by similar means. The relation giving k1 is adopted from (7.03), while that for

k2 can again be derived similarly. Finally, the formula for t1 is adopted from

(7.08). On the other hand, §12-17 of [H] yields r, and T2. and Zund [1990]

defines the contraction yielding e3 (below his equation 2). The contractions

producing the eight curvatures are listed as follows:

r s Ar~s

rs = - rs = a 1 (13a)

A r s = -P rs ArPs = a2 ; (13b)
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rs ArAs =k I  (14a)
r S r S

gzrs V/ = Vrs ArZs =k 2 ; (14b)

ur/s = ~Ar s ras rs .
Ars -- / Urs - /JrsL A A , (15)

A V r = i Ar s 7 (16a)
rs rs

r S r S

-rs u =rs/ rs T (16b)

r s = ~ars
Ars P = -Ars A - 3 (17

The alternative expressions in (13a)-(17) displaying the opposite sign stem from

equation (3.20) In [Hi. All of (13a)-(17) are derived in detail in Appendix C.

The expressions for the tensors Ars, p rs, and irs in terms of the eight

cuuvatu, 6 ai bs~ un the following identity, with the general vector k to be

substituted for by any of A, p, and P:

krs = (k mnA n)A s + (k mnAm/n )Ar S + (km AmVn )A r s +

where the dots indicate six similar terms corresponding to the leg combinations

Az. pg, zv, PA, up, and Pv. This identity is readily confirmed upon the
contractions,~ intrwt r s  r s rs

contractions, in turn, with ArA. Ar A us ..... With the aid of the scalar

invariants from (13a)-(17), the above identity yields

Ars 1 r As a2pr P s +3 pr s 1 r s tV rps V +ir Vs

Ars = - aIrAs - a2Arps - 3Ar V s + trs+k2rAsT2 VrVs

rs = -k 1 IAA s - t 1 r/As + 7-1ALrs -tl'rA s -k 2 /zr/zs + r 2 Ars ,

featured In equation (7) of [Zund, 1990]. This reference is henceforth

abbreviated as [Z].

S sIf these tensors are contracted with any of As, or p . or v , they produce

the first useful set of formulas below. If the index s in the contracting

vectors is replaced by r, another set is obtained, listed below for future

reference as well. The first set reads

Ars aI 2r kI lr A rs 2rtIr A = 831ur-V r  (18a)

/Mrs A -Ol r a I A r+t 1 I V = - Ar +k i V r A rs 2 r 2 r S 3 Ar-7 2 r ; (18b)
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Vrs S = _kIA r t O r - Vrs s = t r k29r ' VrsV = 71 r A+7 2 . (18c)

These equations could also be written with the index r raised.

Since it holds true (see e.g. Hotine's equation 3.19) that

A r r r

rs rs rs

the second set is limited to the following equations:

rsr r
= -rs A = aAs + a 2As + 8 3LVs (19a)

A Li r = sA r =k IA s+ tp -7LTi ) (19b)r r2rs =-rs 1 k1s I ts I 71s,(9b

r r As + k2/ s -2 (19c)Mrs w =' - rs# I - 1 -s T2 s
r r r

Contractions of (18a-c) with Ar, r , or v recover all eight curvatures in

(13a)-(17). The same can be said about (19a-c) in conjunction with As,

or v

In analogy to the formulas (13a)-(19c) making use of space vectors, we

present some of their counterparts in terms of surface tensors. In particular,

of the eight curvatures listed In (13a)-(17), all except 71, 72, and a3 can be

written as contractions of surface tensors. Such formulas are not necessary to

provide new relationships in the current development, but can serve to verify

the consistency and correctness of some results. The equation numbers of these

and subsequent formulas will correspond to their numbers in the space context,

except that they will be attributed a prime. In consulting equations (4.07)-

(4.10) in [H], we write

aa 'U = -Pao A o = al , (13a')

app = -Pp A = a2  (13b')

These relations are derived separately In Appendix C, equations (C.38,40). The

formula for k follows from HotIne's equation (7.03), while that for k2 can be

derived by similar means:

b aoAa 20 = k1  (14a')

b ppA =k (14b')

both are developed separately in Appendix C. equations (C.37.39).
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In the same vein, the relations for t1 are obtained from (7.08) in [H] as

b apaA b ap A = t 1 , (15')

derived separately in Appendix C, equation (C.41). Hotine's equations (4.07),

(4.10), (4.08), and (4.09) themselves yield

A a p = al , Pa^ A a 2 A  (18a')

g A = -a A , ga 2= -A a (18b')

These equations could also be written with the index a raised. Finally,

equations (4.11) in [HI lead to

Aamp = -P A = o + a 2 (19a')

which, in turn, lead to (13a') and (13b') upon the contractions with ?p and go.

respectively.

3.2 Commutators for a General Function

We first introduce the concept of leg derivatives (scalar invariants) in

conjunction with F, an arbitrary differentiable scalar function of position in

space. In following the convention used in [Z], at a given point (e.g., P) we

denote them by

F/ ~F Ar F =FP r F Fvr (0
/1 r /2 = r F3 rF' ,(0

rwhere F r--aF/ax r
. Accordingly. we can writer

Fm =F/m F/ 2  -F/3 V . ' (21)

If dA, dg, and dv denote the length elements along A, p, and v. the quantities

F/V F /2 and F/3 in (20) are seen to be aF/R, aF/ap, and aFiav. respectively.

These leg derivatives are synonymous with directional derivatives along the

directions of the 3-leg. Equation (21) falls In a general category of tensors

expressed via 2, g, and ., such as

v = a 1A + a2 r + a3Vr 1 ri- 2  r'

w = al AA i-a2rls+. .
rs 11 r s 1 2 A .
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etc., where a1 , a ij are referred to in [Z] as "leg coefficients". These
coefficients change only under leg changes, not under coordinate transformation.

As is seen from (21). leg derivatives form a special class of leg coefficients.

Any one of the leg derivatives themselves can represent another scalar

function "F", and can be treated in analogy to (21):

(F /I)n  F/i/lA n A + F /i/3 V = 1,2,3 (22)

where

F(F)A F -(F ) P F E(F) . (23)
/1 (F/1Is F/l/ 2  /i s /1/3 /i s

Thus, for example,
s

F/l2 (F /l8s - (F/ )lap = 31a(aF1aA)
2

If the last equality were written as a F/aAap. it could be confused with

ordinary partial derivatives and changed into a 2 F/a8. This, however, would

be incorrect because the leg derivatives are not permutable as the ordinary

partial derivatives. Such pitfalls, exposed in [Z]. entice us to employ

consistently the unambiguous leg-derivative notation. We remark that in (Z],

the leg derivatives are defined in the section "The Hotine 3-leg and

Commutators", and are further elaborated in Appendix A [ibid.).

When differentiated covariantly, equation (21) yields

Fmn = (F/1) n Am+ (F 2 )n m + (F 3 )v + F/1 A + /2 lmn + F/3 Vn (24)

m n
If we contract (24), for example, with A A , we have

F m -// F mAn m n
mn + F/2 P mnA /3mn A A

where the contractions in the last two terms on the right-hand side have already

been presented in (13a) and (14a). In contracting (24) in succession with Amn

Am n, etc.. and consulting (13a)-(17). we obtain

m~n =F -P -F(25a)
Fmn A= F//1 -1 F/2 - kIF/3 (

FimnA n = F /1/2 - oF/12 - t IF /3 ( 25b)

m n
Fmn AVn= F /1/3 - 3 F /2 + 71F/3 (25c)
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n
F mnP A = F121 + 6,F/I - tIFl3 (25a')

n

FmnP n = F/2/2 + 02F/I - k2F/3 (25b')

m n

FmnP = /2/2 2 3/1 T2F/3 :(5'

F nn =F +F +(2c

=n /3/1 1 kl/1 tlF/2 5"

mn
Fin = F,/3/ 2  t1F /I / k 2 F/ 2  (25b")

inn /3/ -1/ 2/ (25c")

In terms of the leg coefficients. F can be written following the patternrs

of k seen below (17):rs

Fr = (F Amn)A A + (F , m/n)A +( Amn)

rs Fmn r s Finn )r rs +  mn n)A r s

+ (F mnPm nA ) r A + (F mn P m )g rp s  + (F P m V u I'Smn s in rs inrS

+ (F iVm A nv A + (F mn V )L' p + (F m. V )v r , (26)+(inn r s Finn Ur Us inr s

where the leg coefficients, listed In (25a-c"). are shown In parentheses. As

has been indicated in conjunction with (6a.b) and (7), we formulate the

commutators via

F - F = 0 (27)
rs sr

If we generate a new equation by interchanging r and s in (26), and subtract

this equation from (26), we deduce that the condition (27) is equivalent to

F m Y-P pmln =0
mn mn

F Pm An -F Aimnn =0,mn mn

mn P  i n

The substitution of (25a-c") into these formulas yields the desired commutators:

F/112 - F/21 1 oF -2F/2 = 0 . (28a)

F/3/1 - F/1 /3 + kIF/I + (tI+F 3)F/2 - lF /3 = 0 (28b)

F/2/3 - F/3/2 (t-3)F/I k 2 F/2 2 T2 F./3 = 0 (28c)

Equations (28a-c' are identical to the commutators listed in (2) of [Z].
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As an added benefit of this demonstration, we can formulate AF, the

Laplacian of F, with almost no additional effort. From the definition

rs
AF = g Frs

and from the leg formulation of the associated metric tensor, namely

rs r s r s r s
g + P P + V V

one has

AF Frs rsp p + F rs s (29)
rs

The same result follows upon applying g directly (without the leg formulation)

to (26). With (25a-c") equation (29) yields

AF = F/1 / 1 + F/2/2 + F/3/ 3 - (rI-a 2 )F 1 - (T2 +o)F/2 - 2HF/3 , (30)

where

2H = k 1 + k2

and where H is known as the mean curvature, which need not be confused with the

parameter H (generalized latitude).
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4. LEG DERIVATIVES AND COMMUTATORS IN TERMS OF FIVE CURVATURE PARAMETERS

4.1 Leg Derivatives of Curvatures in General Terms

In this section we present formulas giving pairwise combinations (here sums

or differences) of the leg derivatives of curvatures in a general space. As an

example, we develop k 12-t 1/ along two separate paths. The initial equations

in the first path are (14a) and (15), where the first alternatives are utilized

(containing A ), namelyrs

kr A rs tr rsk1 = Ars 1 tl = 2rs r)

These equations yield

k (k 1 )t t = r As't + A r2 st + A 4r. At Pt
1/2 1 t rs rs trs

t rs tr s trs
ti (t)A t = r s A V A + A rs'

1/ t rst rs trs 2 tA
r cudr

where vr could also be written as v r etc. After an exchange of the indices s

and t in the first of the three terms comprising t1 1, the required combination

k /2-t1/ is seen to contain a contraction of the covarlant R-tensor:

r st m r st u rs t
(1rst- rts ) s (R. rstAm ) V A t  R urst U V s t

which follows from (5.02) and (5.06) in [H]. As usual, this and subsequent

tensor equations are considered at the point P.

Since contractions of the covariant R-tensor with four contravariant

vectors of the general 3-leg occur in each of the required combinations, it is

useful to simplify the notation. Upon defining the ranking of A, U. and v as

the first, second, and third, respectively, the adopted symbolism lists in

parentheses the ranking of the vector attributed the first Index of the

covarlant R-tensor (below listed as u), followed by the ranking of the vector

attributed the second index (below listed as r), etc. This convention is

exemplified by

Rur s t A u V r s
t  R(I.3,1.2)

which is the first term in the execution of k /2-t /. In expressing the other

terms, one draws on the first two formulas from (18a), on the first formula from
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(18b), on the first two formulas from (18c), and on (19b). Accordingly, the

result is

k1/2 - t1/1 = R(1,3,1,2) + (kI-k 2 )o1 + 2tIa 2

The second path, used as a means of verification, proceeds via contractions

of surface tensors. In the present case, we have (14a') and the first

alternative of (15') as the initial equations:

k I = b ao II, tI =b ap

In analogy to the above procedure, we form

k (k (k) b A A + b AA + b ,
1/2 1it 1 ap (k

t (tlA = (t = b A A + bAa T + b A A

1/1 1 t It1 )A ao9T Aao + bap b

After an exchange of the indices 0 and T in the first of the three terms

comprising t1 /1 , the required combination will involve Hotine's formula (6.22):

b -b -R Vu xr xs xtb - b = -Rursursx~t

apr arO urst a 0 (

Upon employing Identities corresponding to (6.07) in [H], such as

rha r
xh = h

where h is a surface vector, the first term In the result for k /2-t1/1 is seen

to be

urstu r st-Rurst L' A A = Ru A urs A = R(1,3.,,2),

the same as that found in the previous paragraph. In expressing the other

terms, we draw on (18a') and the first formula from (18b'), and on (14a')-(15').

The final result for k1/2- t1/1 is again identical to the one presented In the

preceding paragraph.

In terms of space vectors, a required combination of the leg derivatives of

curvatures is derived upon first performing the covariant differentiation of the

two pertinent curvatures from suitable alternatives in (13a)-(17), contracting

either outcome with the pertinent contravariant leg vector, interchanging the

second and the third indices in one of the two terms containing second covariant

derivatives, and subtracting one equation from the other. Subsequently, the

difference between the second covariant derivatives of a vector in the resulting
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equation is expressed via the covariant R-tensor; the latter is always

contracted with a permutation of four contravariant vectors of the general

3-leg. Finally, all of the remaining terms are obtained with the aid of (18a-c)

and (19a-c). With regard to the (verification) procedure using surface tensors,

its description is similar except that it involves (13a')-(15') instead of

(13a)-(17), (18a',b') instead of (18a-c), (19a') instead of (19a-c), and,

additionally, Hotine's formula (6.22).

The required combinations derived in this manner are listed as follows:

k 1 /2 - ti/i = R(1.3,1.2) + (k1-k 2 )a1 + 2t1 a2 . (31a)

k/3 + / = R(1.31,3) + k2 + t 2 2t S + '
k1/3  1/1~ 1 1(3ib)
tl1/3 + r1/2 R(2,3.1,3) + 2Ht I + r72 - (k-k 2 )3 + -2a2 (31c)

t1/2 - k2/ 1 = R(2,3.1,2) - (kI-k 2 )a 2 + 2t o1 I  (31d)

t1/3 + r2/ 1 = R(2,3.,1.3) + 2Ht 1 + r172 - k- k 2 P3 - a I (31e)

k 2 2 2 2t -

2/3+ ?2/2 = R(2.3,2,3) 2  3  2

1/2 - 2/1 + (31g)

a1/3 - 3/1 = R(1,3,1,2) - k1 72 + tl1  + k1 1 + t 1o2 - 7183 + 8302 (31h)

a2/3 - 3/2 = R(2,3,1.2) + k 2 r1 - t r2 + tio1 + k2a 2 - r2 3 - 3a 1 (311)

In the approach using space vectors, the initial equations have been: first

alternatives in (14a) and (15) for (31a): first alternatives in (14a) and (16a)

for (31b); first alternatives in (15) and (16a) for (31c); first alternative in

(14b) and third alternative in (15) for (31d): third alternative in (15) and

first alternative in (16b) for (31e); first alternatives in (14b) and (16b) for

(31f); first alternatives in (13a.b) for (31g); first alternatives in (13a) and

(17) for (31h); and first alternatives in (13b) and (17) for (311). In the

(verification) approach using surface tensors, the initial equations have been:

(14a') and first alternative in (15') for (31a); (14b') and second alternative

in (15') for (31d), and first alternatives in (13a'.b') for (31g). A detailed

derivation of (31a-i), including the verification approach, is presented in

Appendix D.
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A few remarks are in order with regard to (31a-i). Upon differencing (31a)

and (31h), (31c) and (31e), and (31d) and (311), the R-terms are eliminated and

the resulting identities, valid in any space, are thereby simplified. As a

matter of verification, we notice that the identity produced upon differencing

(31c) and (31e), namely

71/2 - r2/1 = 1 + 72a, (32)

could be derived by other means. In particular, if we use the definitions
t =t =32'

= (1/n)n A ( n)nt (1/n)n , (32'

express the appropriate leg derivatives, difference the resulting relations, and

make use of the second formula in (18a) and the first formula in (18b), we

recover (32). In the process, the relation n =n has been utilized. This isrs sr

justified since N and thus also n are proper invariants by definition and,

accordingly, have symmetric second-order covariant derivatives in any space.

Next, we observe that if the pertinent R-terms are zero, (31a) and (31d)

are essentially Hotine's equations (8.23), referred to as "another form" of the

Mainardi-Codazzi equations. Clearly, if the space Is flat and thus the

covariant R-tensor is identically zero, these Mainardi-Codazzi equations are

confirmed. However, it is now seen that they hold true also in a class of

curved spaces, where R(1,3,1,2)=0 and R(2,3,1,2)=0. We comment that no

generality has been lost by considering a special pair of orthonormal surface

vectors (A and p), since, if these two R-terms are zero for one such pair, they

are zero for all pairs. Indeed, If we express a general pair r=A rcosO+r sinG,r=Arrur St uurst
j r=-rsin+ur cosO, and stipulate that Rurst a u V r =0 and Rurst L =0,

we notice that, for any 0, either stipulation entails no constraints other than

the above R(l,3,1,2)=0 and R(2,3,1,2)=0. We also comment that the combinations

of the leg derivatives of curvatures are expressed on the right-hand sides of

(31a-I) in terms of all eight curvatures. We will be able to express them in

terms of the five curvature parameters only after linking a, , a2, and e3 to

these curvature parameters via G and H.

Finally, we note that if all the contractions of the covariant R-tensor in

(31a-1) were zero, these equations would correspond respectively to the

quantities (w1). (0 1), (will), ( 1), (oid . (0iii). (WI), (WTI), and (ii)
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identified in the last nine equations listed In the section "Hotine's Problem

Re-examined" of [Z]. However, in the case of our equations (31d-f), the

correspondence with (0i), (Oil), and (0ii1) of [Z] is achieved only after using

the identities (10) [ibid.], which "hold only upon introduction of (W.0) as

coordinates on the N-surface" [ibid.]. Thus. even if the pertinent contractions

of the covariant R-tensor were zero, our equations (31d-f) would still be valid

in a more general environment than their counterparts in [Z]. Since Zund

confines his analysis to the flat space from the outset, implying the vanishing

of the covariant R-tensor, and since he purposefully introduces the coordinates

a and e at an early stage, his development leads to the nine quantities (W

Mi as listed in [Z].

The distinction between (cI )-(cl ) and the above equation set (3la-i)

underlies the distinction between the development in [Z], confined to the flat

space and concerned with "Hotine's assertion", and the development herein, which

proceeds in a space of general curvature characteristics and delays the

introduction of the first two space coordinates (generalized to G and H) for a

later stage. We remark that If our analysis were confined to the flat space

from the outset, and if this (global) flatness were to be guaranteed, then we

would be compelled not only to have the covariant R-tensor at P equal to zero,

but all of its spatial derivatives at P equal to zero as well. Equivalently, we

would require that the covariant R-tensor be zero at every point of the space

(see the latter part of Section A.2 in Appendix A).

4.2 Leg Derivatives of G and H in Terms of Five Curvature Parameters

In order to link the parameters G and H to the curvatures, we return to

(Ila-c) and contract these equations respectively with 2r, r and vr . Of the

resulting system, three equations are identically zero, three are in general

different from zero, and the remaining three are repetitious. The three non-

repetitious equations form the system

rs .12 T1'2

2 s = H 13 ET][2:] T s] (33)

Lrs) L T23 T23

25



Each of the three entries on the left-hand side represents a row vector of three

elements, and the left-hand side Is accordingly a matrix of dimensions (3x3).

The entity inside the first pair of brackets on the right-hand side is a matrix

of dimensions (3x2) as indicated, denoted T. And the last entity in brackets on

the right-hand side is a matrix of dimensions (2x3), where G and H represent
5 s

row vectors of three elements each.

In accordance with the uniqueness of G and H (in conjunction with a given

3-leg), the partial derivatives G and H are also assumed unique at P . Thus.s S

the matrix T has the full column rank 2. In consulting (19a-c), we observe that

the first row on the left-hand side of (33) Is formed through the curvatures a .

a2' and e . whereas the second and the third rows are formed through the five

curvature parameters k 2, k2 , t V r1. and r2. Accordingly, should Gs and Hs be
expressible via these curvature parameters, the submatrix of T compriuing the

second and the third rows must be nonsingular. We henceforth make this

assumption and discard the cases where it would not hold true.

We further discard the case where T and T12 are both zero. which would
12 12

imply that all of o,1 02. and e3 are zero. This indicates that at least one

other nonsingular submatrix of T must exist. Suppose that the submatrix formed

by the first and the second rows of T is singular, so that the first row is a

linear combination of the second. Then the submatrix formed by the first and

the third rows must be nonsingular because otherwise the third row would be a

linear combination of the first and thereby also of the second, contrary to the

present situation. We denote the determinant of the submatrix formed by the

second and the third rows of T by the letter D, and refer to the solution

produced by the corresponding subsystem as the "main solution". Of the other

two submatrices of T, we assume that the assuredly nonsingular one is formed by

the first and the third rows, denote its determinant by D', and refer to the

solution produced by the corresponding subsystem as the "alternate solution".

Finally, we denote the determinant of the submatrix formed by the first and

the second rows of T by D". We make no assumption as to the singularity or

nonsingularity of this submatrix. and do not resolve the corresponding

subsystem. (If it turned out, in some cases, that D'=O but D"VO, we could

interchange the second and the third equations In the above system 33 and

proceed In analogy to the current development.) In summary, we have
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D =T T T3T #0 T (34a)13 23 13 23 -I

D'= T 12T3 Ti2 T # 0 (34b)

D"= T 12T 13 Ti2T13 (34c)

the subsystem associated with D leads to the main solution, while the subsystem

associated with D' leads to the alternate solution. We will formulate the

commutators and resolve as many questions as possible using the main solution.

If we solve for G and H from the main subsystem consisting of the second
5 s

and the third equations of the system (33), and contract them in turn by As, u
S

and v , we obtain the following leg derivatives of the parameters G and H:

G /1= (kIT3 t T13)/D , 6/= (tlT23 k2T3 D,

G/3 = (-r 1 T 3 +r 2 Ti 3 )/D (35)

H/ 1 = (-k 1 T2 3 +t 1 T13 )/D H /2 = (-t 1 T2 3 +k 2 T1 3 )/D

H/3 = (r1T2 3 -r 2T 13 )/D (36)

As is seen above, the formulas giving H/I. i=1,2,3. are obtained from those

giving G upon the following replacements:

T - , ' - -T (36')23 -23 T 13 -13

This simple relationship will be instrumental in providing shortcuts In the

derivations. If we insert the solution for G and H into the first (dependent)S S

equation of the system (33), we obtain identities for a, . a 2, and i3 in terms of

the five curvature parameters:

a, = (k D'-t D")/D , a2 = (t1D-k2D")/D 3 = (-1D'+ 2D")/D . (37)

These identities will enable us to express, for example, the right-hand sides of

(31a-t) In terms of the five curvature parameters.

In developing the double leg derivatives from (35), and forming G/m/n

-G/n/m. we first utilize the general relation

(fM)/n = fn M + fM/n '

and subsequently use a more specialized relation

(T'j/D) = [a(T' /D)/aG]G +/D)/aH]H
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where each T'J may be replaced by Tij. To streamline the derivations, we denote

kc ~a1  ti ~a I a ti b k b (8
S 2  -T a3  2 2 T2  b3 , (38)

and write (35) In a compact form as

G/M = (amT -bm T 3)/D

This form serves with advantage in expressing H/M which follows readily from

G/M In accordance with (36'). The benefit to the derivations emerges, for

example. In conjunction with the intermediate results

amG/n - an G = -(am b n-a nb m)T3 /D

bm G/n - bnG/m bn - a n bm ) T 3 / D

which, due to (36'), can be subscquently applied to the leg derivatives of H.

From the formulas, notation, and intermediate results outlined in the

preceding paragraph, straightforward algebra leads to the general expression

O G-a +(a .xb )1/]
G/m/n - G/n/m nam/n an/m +(arn n n

- [rm/n - bn/m (am b n-an b)K 2 3 /DJT3)/D, (39)

where

K13 = aT'3/aG- aT 3/aH K23 = aT 3/ aG - aT 23/aH (40ab)

We reinstate the curvature parameters from (38). and specialize (39) for m=l.

n=2. then for m=3. n=1, and finally for m=2, n=3. This yields the differences

of the double leg derivatives of G in terms of the five curvature parameters:

S-2G 2
/1/2 /2/i = 1[k1 /2 - t1/ 1 + (k1k2 -t1 )K13/D]T2 3

ft2 D] T /D (4a)
1/2 2/1 + (k 1 k2 -t 1 )K 2 3 / i3

G/3/1 -G/1/3 = (-[k 1 /3 + T1 / 1 + (t 1 T1 -k 1 2 )K 1 3 /D]T 3

+ [t 1 / 3 + T2/1 + (t17I1-kIr 2 )K 2 3 /D]Ti 3 )/D , (41b)

G/2/3 -G/3/2 = {[t 1 / 3 + TI/2 + (k 2 T1 -t 1 T2)K 1 3 /D]T 3

- [k2/ 3 + 72/2 + (k2 rl-t r 2 )K2 3 /D]T 3 )/D . (41c)
1 2 23 13

These formulas apply in a general space, hence we do not replace k k2 -t2 by

K, the Gaussian curvature, which would be valid only In the flat space. The
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expressions for H/m/n-H /n/m can be transcribed from (39) and, in particular.
from (41a-c) upon recalling (36'); there is no need to carry out this direct

transcription explicitly. All such differences of the double leg derivatives

can be expressed through the five curvature parameters if one substitutes the

appropriate combinations of the leg derivatives of curvatures from the relations

developed below, in particular, from (42a-f).

4.3 Leg Derivatives of Curvatures in Terms of Five Curvature Parameters

In using (37) in straightforward substitutions, we reformulate (31a-i) in

terms of the five curvature parameters. This, together with (41a-c) and similar

relations for H, will enable us to present also the commutators in terms of the

five curvature parameters. The reformulated results are

k - t = R(1,3,1,2) - [(k k2 -2t 
2k2)D' + 2HtlD"]/D , (42a)

2 2 2

k1/3 + T/1 R(1,3.1,3) + k + t +

+ [(klT 2 -2t1 71 )D' + t1T 2 D"]/D , (42b)

t1/3 + 1/2= R(2.3.1,3) + 2Ht1 + 1r2

+ [(k1 r-k 2 r+t1T2)D' - k1 T2 D"J/D , (42c)

2 2,,
t/ k2 /1 = R(2.3.1.2) + [2Ht D' + (k k2 -2t -k2 ) ]/D , (42d)

t1/ 3 + =2/1 R(2,3,1,3) + 2Ht 1 + T1r2

- [k2 r1 D' + (k1T2 -k2 T2 -t1 71)D"]/D , (42e)

2 2 2
k2/3 + r2/2 = R(2,3,2,3) + k2 + t2 + 2

+ [tIriD' + (k2 ri-2t 1r2 )D"]/D , (42f)

a1/2 - 02/1 = R(I.2.1,2) + k k - t 2
121 2 122 2 2,22 2 D2

" ((k2+t 1 )D# - 4Ht D'D" + (k 2+t)D" 2]/D , (42g)

a 1/3 63/1 = R(1,3.1,2) - k1 72 + t171

" [(k2+t2+T)D' - (2HtI+r r2)D"]/D
I-]T D2 .'D1/_2

" C-tIr D'- (k2 Tr+t1 T2 )DID" - k2 T2 D"
2l/ . (42h)
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a2 /3 - 63/ 2 = R(2,3,1,2) + k2T I - T2
2k2 +t 1 72,,]/

" [(2Ht +Tr 2 )D' - 2+2 +2)DID

22 2 2" [k1 1 D' - (k1 72 +t1 T1 )D'D" + tIT 2 D "2/D (421)

4.4 Commutators in Terms of Five Curvature Parameters

We are now in a position to formulate the desired commutators; we begin by

transcribing (28a-c) for G:

G - G -OG - G = 0 (43a)/1/2 /2/1 1I /1 - 2 /2=

G/3/1 - G/1/3 + kIGil + (t1+3)G - 1G/3 = 0 , (43b)

G/2/ 3 - G/3/2 - (t1 -e3 )G 1 - k2 G/2 + T2 G/3 = 0 . (43c)

We next substitute (41a-c) for the differences of the double leg derivatives of

G. into which we first substitute (42a-f) giving combinations of the leg

derivatives of curvatures; substitute (35) for the (single) leg derivatives of

G; and substitute (37) for o 1 , o2 . and F3' It is unnecessary to carry out these

tasks for H, due to the fact that both the leg derivatives (in equation 36) and

the differences of the double leg derivatives (past equations 41a-c) follow from

their counterparts for G upon the replacements (36'). The same then holds true

for the corresponding commutators. Since all of the above substitutions are

expressed in terms of the five curvature parameters, so are the resulting

commutators for G and H. In performing the operations as just indicated, for

the G-commutators we deduce

[R(I,3,1,2) + (klk 2 -t2)(K 1 3 -D')/D]T23

- [R(2,3,1,2) + (k k2 -t2)(K 2+D")/D]Ti3 = 0 , (44a)

-[R(1,3,1,3) + (t1 TI-k I 2 )(K 13 -D')/D]T2 3

+ [R(2,3,1,3) + (t1 1 -k I 2 )(K2 3 +D")/D]T 3 = 0 . (44b)

[R(2,3,1,3) + (k2 r 1 -tI 2 )(K1 3-D')/D]T23

- [R(2,3,2,3) + (k2 r1 -t 1 T2 )(K2 3 +D')/D]Ti3 = 0 . (44c)

The three H-commutators are obtained from (44a-c) upon the replacements (36').
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In abbreviated notation, the three G-commutators read

UT 3- V1T =0 , -U2 VT' =0 , U3 T'3 - V3Ti3 =0 o. (45a)

where the terms U. and Vi 1=1.2.3. are easily identified from (44a-c). The

H-commutators are similarly written as

-UIT * V1T13 = 0 . U2T23 - V2T13 = 0 -U3T23 + V3T13 = 0 (45b)

Upon assuming that T'3 0, (45a,b) yield

-V1D = 0 , -V2D = 0 . -V3D =0

If this assumption is invalid, but T'3/O holds true, it follows that
13'

-U ID = 0 , -U 2D = 0 , -U 3 = 0

Since D#O (see equation 34a), at least one of the two assumptions must be

true; in either case we obtain

U1 = U2 = U3 = 0 , V 1 = V2 = V3 = 0 (46ab)

Finally, we present the results (46a,b) explicitly as

R(l.3,1.2) + (k k -t 2)(K -D')/D = 0 , (47a)
1 2 1 13

R(1,3,1,3) + (t1 , ri-kIT2)(K 1 3 -D')/D = 0 (47b)

R(2,3,1,3) + (k2 r1 -tIr 2 )(K1 3 -D')/D = 0 ; (47c)

R(2,3,1.2) + (k k2-t)(K2 )/D = 0 (47d)
1 2 1)( 23 D)/=0

R(2,3,1,3) + (t ii-k 1 r2 )(K2 3 +D")/D = 0, (47e)

R(2,3,2,3) + (k2 ri -t1 T2 )(K2 3 +D")/D = 0. (47f)

Equations (47a-f) are equivalent to six commutators for G and H in terms of the

five curvature parameters and of the contracted covariant R-tensor. We express

the latter conveniently in a temporary coordinate system at P, which we define

as locally Cartesian, but with the coordinate axes directed along the triad A,

g, v instead of A, B, C. In this system, the contractions R(l,3,1,2), etc., are

nothing else but R 1312 etc.. that is. actual components of the covariant R-

tensor. Since the latter has only six Independent components, six equations can
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be used to resolve it. Unfortunately, only five independent components of this

tensor are represented by (47a-f), due to both (47c) and (47e) containing

R(2,3,1.3). In order to gather one additional independent relation in view of

the covariant R-tensor. we are compelled to resort to the alternate solution.

4.5 Alternate Solution

If we solve for G and H from the alternate subsystem consisting of the
S s

first and the third equations of (33), and contract them In turn by As , 9 , and

V , we obtain two sets of leg derivatives, the first of which reads

G 1a12=23/1 (D 3 -t T' )/D ' , /2 ( 2 T -kT2)/D

G/3 6 3 T 3 +( 2 Ti 2 )/D'. (48)

The three leg derivatives of H follow from (48) upon the replacements

T'23 - -T23 , T' 2 -T12 (48')

In analogy to (38), we denote

1 l a 02 a2 , a 3 , t b k b2  2 3

In pursuing a path paralleling the development that followed (37), we arrive at

a relation for G/m/n-G/n/m similar to (39), where, however, D is replaced by D'

(in three instances), T13 is replaced by T, and K is replaced by K1 2:
1T 12' 13 1

the latter is defined as

K12 = aT 2/aG - aT 2/aH (49)

The specializations for n, m yield the formulas for G //2-G /2/ G G/3/1-G/1/3,

and G/2/3- G/3/2. However, unlike (41a-c), these formulas contain all eight

curvatures, i.e., contain a , V 2, and F3 in addition to the five curvature

parameters. The same can be said about the formulas for H /m/n-H /n/m which are

obtained from their counterparts for G upon the replacements (48').

The double leg derivatives just mentioned can be rid of the curvatures a V

a2 , and e3 upon applying the Identities (37) transformed into the following

useful form:

2
(k 2 -t 2 )D = (k k -t 1 )D' (50a)
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(t 1 3 +r 2 aI)D = (k1 7r2 -t1 rI )D' (50b)

(k 23 +T2a2)D = - (k271-t 1 2 ) D '  (50c)

These equations lead to the results paralleling (41a-c), namely

G/l/ 2  /2/1 = ([01/2 - "2/1 + (k1k2 -t1)K 1 2/O]T2 3

t1 / 2 -2/ (k k2 -t2)K 2 3 /D]T 2 /D' , (51a)

G/3/1 - G /1/ 3 = -[a/3 - 3/1 + (t1 T1 -kIr 2 )K12 /D]T % 3

+ [t1/3 + 2/1 + (tIT 1 -k1 r2 )K2 3 /D]T 2)/D' , (51b)

G /2/3 - G/3/ 2 = ([a2/3 - 63/2 + (k2 r1 -tIr2 )K1 2/D1T 3

- [k,2/ 3 + T2/2 + (k2 r1 -t1 r2 )K2 3 /D]Ti 2}/D' (51c)

The formulas for H are obtained upon the replacements (48'). All of these

differences of the double leg derivatives can be expressed through the five

curvature parameters If one substitutes the appropriate relations in terms or

the leg derivatives of curvatures from (42d-i).

To obtain the G-commutators, we recall equations (43a-c) and make the

following changes: substitute (51a-c) for the differences of the double leg

derivatives of G. into which we first substitute (42d-i) giving combinations of

the leg derivatives of curvatures; substitute (48) for the leg derivatives of G:

and substitute (37) for a,, a2. and F3' This yields

(R(1.2,1.2) + (k k2 -t2)(K 2 +D)/D] T3

- (R(2.3.1.2) + (k k2 -t2)(K 2 3 +D")/D]T]2 = 0 (52a)

-[R(1,3,1,2) + (t1 71 -k1 r 2 )(K1 2 +D)/D]T5 3

+ [R(2,3,1.3) + (t1 r-k 1 '2 )(K2 3 +D")/DITi2  0, (52b)

[R(2,3,1,2) + (k2 7 -tlT 2 )(K 2 +D)/D]T'

-[R(2,3,2,3) + (k2 T1 --t1 72 )(K2 3 +D")/D]Ti2 = 0 (52c)

The three H-commutators are obtained from (52a-c) upon the replacements (48').

The derivation of (52a-c) could have been slightly shorter if a 1 , a2' and F3 had

been replaced at a later stage. Instead of using (51a-c) In the substitution

described above, we cuuld have used the formulas mentioned (but not listed)
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below (49); Into these we could have substituted (31d-i) rather than (42d-i);

and to the outcome we could have applied (50a-c). thereby by-passing (37).

Having found the six commutators, we follow the procedure that has led from

(45a) to (46b). in which D#O is now replaced by D'XO. Obtained in this

manner, the first three of six equations paralleling (47a-f) are presented as

R(1,.1.2) + (k k -t 2 )(K +D)/D = 0 (53a)

R(l.3,l,2) + (t 1 T 1 -k Ir92(K 1 2 +D)/D = 0. (53b)

R(2,3,1,2) + (k 2 r1(- t1rT2 )(K 1 2 +D)/D = 0. (53c)

The remaining three equations turn out to be (47d-f). The new system again

features only five independent components of the covariant R-tensor; we observe

that the third and fourth equations (i.e., equations 53c and 47d) contain the

same quantity R(2,3.1,2).

The important fact, however, is that the alternate solution leads to

R(1,2,1,2) in equation (53a), a quantity that does not appear in any of (47a-f);

all the other contractions have already been produced by the main solution.

Accordingly, (53a) replaces (47c) and thereby creates a combined system capable

of resolving six independent components of the covariant R-tensor. We reorder

the equations and present the final system as

R(1l.,2) + (k k -t 2)(K 1 2 +D)/l = 0, (54a)

R(1,3,1,3) + (t 1 r1 -k 1 T2 )(K 1 3 -D)/D = 0. (54b)

R(2,3.2,3) + (k 2 1 -t IT2 )(K 2 3 D")/D 0, (54c)

R(l.,,2) + (k k - t 2 )(K - D')/f) 0 ,(54d)

1 2 1 13

R(2,3,1,2) + (k k -t 2)(K 2 3 +D")/D =0, (54e)

R(2,3.,3) +(t 1 r I-k 1 rT2 )HK2 3 +D)/D = 0. (54f)

We remark that In (5.25) of CHI, the quantity R Ars Iu A sp tIs denoted C and is

referred to as the Riemannian curvature of the section of space defined by A, g.

This quantity is our R(l.2,1.2) from equation (54a). Similarly, R(l.3,1,3) and

R(2,3,2,3) from (54b,c) can be called the Riemannian curvatures of the space

sections defined by A. P. and by M. Lj, respectively.
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5. APPLICATION TO HOTINE'S COORDINATES w AND

5.1 Covariant Riemann-Chrlstoffel Tensor

We specialize the parameters G and H to Hotine's coordinates w and 0. and

find out what it entails in terms of the covariant R-tensor and the space. The

comparison of equations (10a-c) herein with the formulas (12.008) in [H] reveals

the following correspondences:

f, = -sinw . f2 =  cosw f3 = 0

9, = -sine cosw g2 = -sino sin(o g3 = cos5

hi = coso cosw h2 = coso sinwo h3 = sin .

In consulting (12a-c'), we deduce that

T12 = sine , T13 = -cos , T23 = 0 (55)

T =0 T o T 3 -1 (56)1213T' - .256

which, together with (40ab) and (49), yield

K12 = -coso . K = -sino K = 0 . (57)

Finally, from (34a-c) we have

D = coso . D' = -sin . D" = 0 . (58)

The result D"=O indicates that G and H specialized for w and 0 make only the

main solution and the alternate solution of the system (33) feasible, but not a

third kind of solution.

From (57) and (58) we observe that

K12 + D = 0 K - D' = 0 K23 + V = 0 (59)

Thus. equaticas (54a-f) yield

R(l.2.1.2) = R(1,3,1.3,) = R(2.3.2.3)

= R(l.3,l,2) = R(2,3.1,2) = R(2,3.1.3) = 0

Upon employing the temporary coordinate system introduced below (47f). in which

r  (1.0.0) r = (0,1.0) P r 
= (0.0.1)
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the above values of R(i,j,mn) become R jmn. Accordingly, we have

R1212 = R1313 = R2323 = R1312 = R2312 = R2313 = 0 (60)

If the quantities In (60) represent six independent components of the covariant

R-tensor. this tensor must be zero. Conversely, if all components of the

covariant R-tensor are zero as a consequence of (60), the six components shown

in (60) are independent. Due to the skew-symmetric properties of the covariant

R-tensor, namely R imn=v -R inm and R imn=-R jim n ' if the same index appears more

than twice, the component is automatically zero. Thus, only the following

permutations of indices could potentially result in nonzero components:

1212, 1213, 1223; 1312, 1313, 1323; 2312, 2313, 2323; (61)

plus nine permutations (three in each group) with the last two indices

interchanged, which only affects the sign; plus 18 permutations (six in each

newly expanded group) with the first two indices interchanged, which again only

affects the sign.

The above description reveals that if the nine permutations of indices in

(61) result in zero components, all components must be zero. This is, indeed,

the case here because for every permutation in (61) the corresponding component

of the covariant R-tensor Is forced to zero by one of the conditions in (60).

Accordingly, this tensor must be zero. The components of the covariant R-tensor

are not some general functions of ca and 0 as one might expect from (54a-f),

which would then happen to be zero at P. but, rather,

R constant = 0 (62)

ijmn

This is a direct consequence of the values in (59), which are identically zero

regardless of w and 0. The present argument could be repeated in conjunction

with Pny N-surface; thus, (62) is valid regardless of o, 0, and N, i.e., it is

valid for any location. Since R jmn is identically zero in one coordinate

system, the same is true in other systems. The tensor equation (62), which is

our previous equation (8), reveals that the space must be flat. As a

consequence, all orders of covariant derivatives of A , B , and C are zero, allr r r
Christoffel symbols in (x r ) and all orders of their partial derivatives are

zero, the locally Cartesian system at P Is globally Cartesian, etc., as can be

gathered from Appendix A.
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5.2 Leg Derivatives

Leg derivatives and other quantities In Hotlne's system can be formed upon

substituting (55)-(57) and (62) into the appropriate relations. For example.

the Initial formulas (Ila-c), specialized here as

Ars =  (sine pr - coso Lr )s ,

Prs = -sino 2r ws V r Os

= cos4 A w + prC
rs r s r s

are Identical to equations (12.014-016) in [H]. As another example, the main

solution provides the leg derivatives of & and € via (35) and (36). namely

(/ 1  1 -k /Coso . W = -tl /cos / = ( 1 /c3oso (63a)

/= -t 1 ' 12 k3 = T2 (63b)

implying that

s= (-k1 sA - t1 9s + T IV)/c os (63a')

s= -t1 A - k2 s 
+ 72)s (63b')

In the same way, the alternate solution yields via (48):

O) = (or I A + + )/SinO ; (63a")

the alternate formula for 0s is identical to (63b').

The above formulas (63a',b') are Hotlne's equations (12.046,047). However,

here they are obtained at an early stage, immediately following A rs' rs' rs'

whereas in (H) the gradients ws and 0s can be expressed only after individual

~r r r
components of A #.r and A r' 9 r' vr have been found. We also comment that

the alternate formula (63a") does not have an equivalent In [HI. On the other

hand, (63a'.b') and (63a") follow respectively from equations (A.4.5) and (8) in

[Z]. The relations in our equation (37) express the curvatures aV a 2 , and 3

In terms of the five curvature parameters; here they have the form

a, = -k1 tano. a2 = ttano , . 3 = 7 1 tano " (64)

Of these formulas, the first two correspond to (12.066,067) In [HI, but the

third Is again without an equivalent there; however, it appears In [Z] as one of
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the equations In (9). We finally remark that we are henceforth entitled to use

the relation

K = k k - t1

1 2 1'

valid in the flat space, where K is the Gaussian curvature (see also equations

D.17a-c in Appendix D).

The leg derivatives of curvatures in terms of the five curvature parameters

can be readily transcribed from (42a-i) upon using the specializations (55)-(57)

as above, and upon substituting zero for all of R(i.j.m.n) according to (62).

The specialized formulas read

k - t 2 (K-k 2t2)tano , (65a)1/2 1/1 1 1

k + k2  t2 + (k r2t tano, (65b)
1/3 + 1/1 1 1 1 t1 1 1

t1/3 + T1/ 2 =2Ht1 + 72 - [(kI-k 2 )r1 + tIT2Itano (65c)

k2/1 - tl/2 = 2Ht I tano (65d)

t1/3 + T2/1 = 2Ht 1 + 1T 2 + k27 1 tano (65e)

2 2 2
k + 2 = k2 + t2 + T2 _ tl'ltan , (65f)2/3 + 2/2 2 1 2 1 t 1~a2 2

a1/2 - a2/1 = K + (k2+tl)tan 2 , (65g)
222 2

3/ - a1/3 = k1 72 - t1 'l + (k2+t2+r 1 )tan 1 + t 1 tan 2 (65h)

F3 /2 - a2/3 = -k 2 T1 + t1 T2 + (2Ht 1 +T1r2 )tano - k T1 tan 2 (651)

In analogy to the comment made in the paragraph below (32'), the relations (65a)

and (65d) correspond to Hotine's equations (8.23), the Mainardi-Codazzi

equations, expressed now in terms of the five curvature parameters. The other

relations in (65a-i) do not have equivalents in [H].

However, as a matter of verification, the formulas (65a-f) correspond

respectively to the initial formulas for (w I). (Ii). (iii1, (i 1), (0i1). and

(0111 ) appearing in the section "Hotine's Assertion" in [Z), where they are

credited to Hotine (an unpublished report to the I.A.G. Toronto Assembly, 1957).

And the formulas (65g-i) are equivalent to the version of (w*), (w)* ). and
I ii

(w* ) appearing below equation (10) in [Z], provided these quantities are
III

combined with equation (9), [ibid.]. Since in [Z] and [H], as well as in
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Hotine's unpublished report, the space is assumed to be flat from the outset.

this agreement cross-validates the consistency of the pertinent derivations.

To obtain the differences of the double leg derivatives of o from the main

solution, we specialize (41a-c):

01/1/2 - (/2/1 - (k1/2 - t/1 - KtanO)/cosk . (66a)

/3/1 - 0/1/3 = [k1/3 + T1/1 * (k1 r2 -t1 r1 )tan~j/coso , (66b)

(/2/3 - W/3/2 = - [t 1 / 3 
+ T1/2 + (t1 T2 -k 2 r )tangil/cosO . (66c)

In recalling the comment below (41c), we form analogous relations for 0:

0/1/2 - 0/2/1 = k2/1 - t/2 (66d)

0b/3/1 - /1/3 = t1/3 + Y2/1 (66e)

0/2/3 - 0/3/2 = -k2/3 - r2/2  (66f)

In turning to the alternate solution, from (51a-c) one has

)/1/2 - '/2/1 = (a1/2 - 02/1 - K)/sino , (66a')

(/3/1 -/1/3 = (63/1 - 01/3 - k1 72 + t1 1 )/sino , (66b')

W/2/3 - W/3/2 - - (F3/2 - 02/3 + k2r1 - t 1 r 2 )/sin . (66c')

With regard to 0. the alternate solution gives an outcome identical to (66d-f).

The differences of the double leg derivatives in (66a-f) and (66a'-c') do not

have equivalents in [H] or [Z].

The differences of the double leg derivatives can be presented entirely in

terms of the five curvature parameters. We first consider (66a-f), where we

make appropriate substitutions from (65a-f). This results in

2 2 (67a)

/1//2 -/2/1 = (k 1 + tl)tan /cos'
2 2 2 tano)/coso (67b)

/3/1 -l/13 =(k 1 + l + 1+ tt1

(12/3- /3/2 = - (2HtI + r1T2 - k1 Tltano)/cos (67c)

/1/2- 0/2/1 = 2Ht1tano ' (67d)

0/3/1 = 2Ht1 + r1 r2 + k2 Tiltano . (67e)
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(k2 2 - t T tano) (67f)/2/3 - /3/2 2 1 2k+t 1 1

However, if we similarly make substitutions from (65g-i) into (66a'-c'). we

recover the formulas (67a-c). Thus, equations (67a-f) uniquely express the

differences of the double leg derivatives of Hotine's coordinates V and 0 in

terms of the five curvature parameters. These formulas do not have equivalents

in [H] or [Z].

5.3 Laplacians of w and

In differentiating the basic gradient equation (9) covariantly and

contracting (on both indices) with the associated metric tensor, we obtain AN,

the Laplacian of N:

SNni rs

AN = n P + ng PS rs

The first term on the right-hand side is n /3. while g rSrs in the second term is

-2H according to Hotine's formula (7.19). It thus follows that

n/3 = AN + 2Hn a AN + (k +k 2n . (68)

which Is a standard result equivalent to Hotine's equation (12.100). Although

this result is valid in a general space, here it is used for the flat space.

Before expressing the Laplacians for w and 0 via equation (30), we need to
r st n, stformulate the invariants rst A g and P rstp g . specialized for the flat

space.

In the flat space, we have N rst =Nst =. . .. where any permutation of indices

is permissible. It then follows that

(AN) r = gSt Nstr = gStN = gst (n r+nsv +n tVrs+Orst

stand, due to the symmetry of g . that

gst Vrst ((W r - AD)nr - 2gSt n s / /n (69)

It we contract (69) with Ar and utilize (19b), we obtain

r st
rstg = [(AN)/I + 2(kIn/I+tI n/2-rin/3)]/n
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The definitions of r1 and -2 in (32') supply n/1 and n,/2, while (68) supplies

n/3. Thus, the above equation leads to

r 'Zt,
rstA g = 2 I- t,'nj (n,/l (70a)

r
If we contract (69) with r and utilize (19c), a similar procedure yields

r st
1rstU r =2(tl1l-klT2-72AN/n) + (1/n)(AN)/2 (70b)

To develop the Laplaclan for w, we first specialize (30):

Aw = w/1/1 + )/2/2 + W/3/3 - (la2)W / (r2+a1)W/2 - 2Hw /3 (71)

In recalling (63a), we form

k/1/1 1 t1 tano-kl/1)/cos . ( /2/2 = (k 2 t tano-t 1 /2)/coso

W/3/3 = (rlr 2 tan+ T1 / 3 )/cos , (72)

where use has been made of (63b) as well. To determine -k we adopt kI from
the second alternative in (14a), perform the first-leg differentiation, and use

the first formulas in (18a,c) together with (19b). This results In

-k1/1 = i A r A s t - 2tIF 1 + k171 (73a)

Similarly, we adopt from the second alternative in (15), perform the second-

leg differentiation, and use the second formulas in (18ab,c) together with

(19b). This yields

1/2= r s t 1 2 + k2 r1  (73b)

Finally, we adopt r from the second alternative in (16a). perform the third-leg

differentiation, and use the third formulas in (18a,c) together with (19b),

which gives

rst
T1/3 = vrst A r + 72 2 - k171 - t7 2  (73c)

If we substitute (73a-c) Into (72), and substitute the new relations Into

(71), where also (63a) is to be used, we obtain an intermediate result
= (~ r st -to 21

Aw = (vrst g 1- t I  - k2 a2 + T 2 3 + (2Ht1 1 72 )tano]/cosO

here advantage has been taken of the leg formulation of the associated metric

tensor as seen prior to (29). From (64) it follows that the second, third, and
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fourth terms Inside the brackets above form (2Ht 1 +r1r 2 )tan@. This new term,

together with the expression (70a) substituted for the first term inside the

bracke b, transforw L. lntermeiate result !nto

Aw = C-2(kr2r-t1T2+1 AN/n) + 2(2Ht 1+y12)tanO + (1/n)(AN) ]/coso . (74)

This Laplacian agrees with (12.104) of (H].

In the last step. (30) is specialized for 4 to read

AO = 0/1/1 + 0/2/2 + 0/3/3 - (T~a°2)0/1 - (r 2 +0 1 )0/ 2 - 2HO /3 (75)

From (63b), the double leg derivatives readily follow as

/1/1= -tl/1 ' 0/2/2 = -k2/2 ' 0/3/3 = T2/3 (76)

We adopt t1 from the fourth alternative of (15). perform the first-leg

differentiation, and use the first formulas in (18a,b,c) together with (19c);

this yields

1/1t skt 1 - k2a1 k 12 (77a)

Next, we adopt k2 from the second alternative in (14b). perform the second-leg

differentiation, and use the second formulas in (18b,c) together with (19c),

which gives

-k2 /2 = Ar 9s ti + 2tl I2 + k2r2 . (77b)

Finally, we adopt r2 from the second alternative In (16b). perform the third-leg

differentiation, and use the third formulas in (18bc) together with (19c),

which results in

rst
T2/3 = vrst P r - 71 3 - tit 1 - k272 (77c)

The substitution of (77a-c) and (63b) into (75) yields

r st kc +
AO = vrst urg + k1a I + tI2 - 7163

A subsequent substitution by (70b) and (64) gives the Laplacian as

AO = -2(k1?-2 -tlTl+r 2 AN/n) - (k2 +t2 +2 )tan + (1/n)(AN) . (78)

which agrees with (12.105) of [Hi.
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6. SUMMARY AND CONCLUSION

T2 Ji.cuss the v ,!!dlty of I11tinc'z ceorditates 9, ani O. the latter have

been treated in a generalized form G and H in a general Riemannian space. The

conditions of symmetry of the second covariant derivatives of G and H result in

six commutators containing the single and the double leg derivatives, i.e., the

directional derivatives along the 3-leg A, g, P, of G and H (see equations 28a-c

applied to both G and H). The formulation of the commutators entails the task

of expressing pairwise combinations (sums or differences) of the leg derivatives

of eight curvatures, which brings forth the covariant Rlemann-Christoffel

tensor, called here the covariant R-tensor, contracted with certain permutations

of contravariant leg vectors (see equations 31a-i). With the aid of G and H,

combinations of the leg derivatives can also be expressed in terms of the five

curvature parameters k 1  k2 ' t1 .71V and 72 (see equations 42a-i). In either

formulation, the combinations of the leg derivatives feature the contracted

covariant R-tensor, and are valid in a general space.

Accordingly, also the six commutators feature the contracted covariant R-

tensor and the five curvature parameters. In addition, the commutators feature

some quite general functions of G and H, which uniquely relate the 3-leg to the

Cartesian axes A. B, C of a locally Cartesian coordinate system {x r} at the

point P. From the definition of (xr ), it holds true, in the flat space as well

as in curved spaces, that

A =B =C =0

rs rs rs

These tensor equations apply at P. as do all the other relations in this study;

the only exceptions occur when a tensor, such as the metric tensor, is expanded

in the Taylor series from P to arbitrary locations.

If the characteristics of the space, and thereby the components of the

covariant R-tensor. are known, the commutators represent conditions on the

above-mentioned general functions of G and H. On the other hand, if such

functions are known or chosen, the commutators represent conditions on the

covariant R-tensor and thereby on the space. The latter possibility forms the

backbone of the present analysis. In essence, it enables one to choose the

coordinates, and to require that the space conform to this choice. Since the

covariant R-tensor has six independent components, six distinct contractions
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must be constrained by the commutators in order to make a complete resolution of

this tensor feasible. Upon relating the partial derivatives of G and H (with
rerpect to the cou jid'Leo {Ar . .Lv -:7 '-aet-rs in one of three

possible systems of linear equations, only five independent contractions are

obtained, the sixth being repetitious. Another system must then be resolved,

supplying the sixth independent constraint. The general analysis in terms of G

and H culminates in equations (54a-f), which are equivalent to a linearly

independent system of six G- and H-commutators featuring the five curvature

parameters, capable of resolving the six independent components cf ie covariant

R-tensor.

The resolution of six independent components, and thereby of all

components, of the covariant R-tensor can be readily accomplished in a temporary

coordinate system adopted as locally Cartesian along the 3 leg (belonging to P).

The resuiLs t. dn then be transformed to any other coordinate system. In general,

the components of the covariant R-tensor at points on a given N-surface may be

some functions of G and H, which, at P, could turn out to have the zero values.

The curvature tensor would then be zero not only in the temporary coordinate

system but in any other system, such as (x r}. This would entail

Arst = Brst Orst = 0 , (79)

Implying that the local system (x r ) is Cartesian to at least a second order.

Equivalently, the relation

krs t = krts  (79')

would hold true for a general vector k belonging to P. However, if the partial

derivatives (with respect to {xr ) as usual) of the covariant R-tensor departed

from zero, it would follow that A rstu0. etc., and the local system would be

Cartesian only to a second order. Based on the components of the covariant

R-tensor and on the components' various partial derivatives at P. one could

construct, via the Taylor-series expansion, the metric tensor In (x r  for

arbitrary points, and thereby concretely express the space.

If six independent components of the covariant R-tensor are identically

zero (regardless of G, H and N). i.e., if

R constant = 0 (80)
fjmn
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holds true for these components and thus for any components of the covariant R-

tensor, then the following relations are valid:

Arst B rst = rst A rstu B rstu = rstu 0 . (81)

where the dots represent all the other sets of covariant derivatives.

Equivalently, one can state that the local system is globally Cartesian (or

Cartesian to any order), which, in turn, implies that the space must be flat.

The solution (80) characterizes the specia]4zation of G and H to Hotine's

coordinates w and 0. That is to say, if one chooses co and 0 as the first two

coordinates and examines what kind of space this choice entails, the answer is

that the only admissible space is the flat space. In any other space, equation

(80) would not hold true, and o, 0 would be inadmissible as coordinates even in

a small iteighborhood of the point P.

In view of the abo-'P, the answer to the question posed in the Introduction

is that w and 0 may exist as coordinates only in the flat space. Thus, the

outcome of the feasibility study concerned with the admissibility of the (W.0,N)

coordinate system In a curved space is negative. The flatness of the space is

reflected in that all orders of covariant derivatives of A , B , C are zero
r r r

Not only must (79) hold true, as well as all It implicitly entails, but the

additional relations in (81) must also hold true, as well as all they entail.

There is no need to enforce the flatness separately via conditions of the kind

(79'), which are now satisfied as a by-product. The Mainardi-Codazzi equations,

for example, would represent even a weaker condition than (79') because they

correspond to the specialization vrst=rts. These and other such equations are

then regarded merely as identities in the flat space, where, however, they may

be of great value in their own right. In conclusion, the admissibility of

Hotine's (w,O,N) coordinate system has been restricted to the flat space (or its

regions). In the process, a number of equations from [Z]. applicable to the

flat space, have been cross-validated by independent means, and several new

relations have been presented that do not have equivalentc in [H] or [Z].
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APPENDIX A

LGOLLY CnRITESIAN COORDINATE SYSTEM

A.1 Metric Tensor

We consider a general Riemannian space (flat or curved), where, at a given

point P. we establish a locally Cartesian coordinate system as discussed in §5-6

of (Hotlne, 1969]. This system, denoted {xr . r=1.2.3, has the property that

the Christoffel symbols (the C-symbols) at P are zero for any indices i,J,k:

rirk =0. (A.l)

When written in a matrix form characterized by brackets, at P the metric tensor
rs

g rs and the associated metric tensor g are

[grs I = gr,] = I. (A2)

The components of an orthonormal triad A, B, and C Identifying the coordinate

lines at P are given by

Ar = Ar = (1,0.0) , B = Br = (0,1,0) C = Cr = (0,0.1) (A.3)rr r

Since grs is constant under the covariant differentiation, It follows that

ag /axt = 1 + g1rsrt is stgri,

2 t kfrom which the ordinary partial derivatives yield 8 g slax ax
3 t k ua g rs/ax ax ax , etc.

Due to (A.1), for P we deduce

tag rs/ax = 0 , (A.4a)

2 t k S r ka g /ax ax rt r )/ ax (A.4b)
3r st

3 t k u 2 s r k ua g /ax ax ax =a r + P )/ax ax (A.4c)

etc., where we have also utilized (A.2). as well as (A.4a) in the subsequent

expressions. An n-th order (n>3) partial derivative of grs comprises an

(n-1)-th order partial derivative of the C-symbols in parentheses above, plus

terms containing products of (n-3)-th, (n-4)-th, etc., down to the first-order

partial derivatives of the C-symbols; there are no (n-2)-th order partial
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derivatives of these symbols present. We are now in a position to formulate the

metric tensor grs at a point P , where the coordinate differences from P are

Axt , by medns of the Taylor series:

g'r = g + (1/2)a(r s  + r k t k
rs rs rt st)/ax Ax Ax

(116)(a 2( 1 St + r )/ax k xu]Ax tAx kAxu + .... (A.5)
r st

This Is not a tensor equation, but a relation expressing individual components

of the metric tensor at P' from individual components of this tensor at P. As

in other cases, the former can be computed from the latter via the Taylor

series. One readily ascertains that such an expansion cannot produce a tensor

equation. At the outset, grs on the left-hand side of (A.5) is associated

with P', whereas g on the right-hand side is associated with P: in a tensor

equation all quantities would be associated with the same point. Furthermore,

the terms beyond the first on the right-hand side are not tensors at all.

li the expression inside the first brackets of (A.5) is nonzero, the system

{xr } is Cartesian to a first order, and as such, is confined to P and its

immediate neighborhood. If this expression Is zero but the expression inside

the next brackets is nonzero, the system is Cartesian to a second order, etc.

If all orders of partial derivatives of the C-symbols are zero at P. we have

grs=grs (equality for components, not a tensor equation) for any point P'. and

the system is globally Cartesian. Clearly, the converse is also true; in a

system that is Cartesian throughout the space, the metric tensor (A.2) is

constant everywhere, making the C-symbols and all of their partial derivatives

identically zero.

A.2 Riemann-Christoffel Tensors

We now turn our attention to the Rlemann-Chrlstoffel tensor and its

covariant version, which we call respectively the R-tensor and the covarlant R-

tensor. The former Is derived in §5-3 of [Hotine. 1969], and is presented as

u 4i u k m u u
R = a /r /ax-/ - a.. /ax + r. r (A.6)

.Ijk k ij ik mj i mk

Due to (A.l), in the system (x r } at P we have

aru /ax j = ar u /axk + Ru  (A.7)

tk j .lJk
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The R-tensor Is linked to the covarlant R-tensor by

Ru umR
.k g mijk

At the point P. all components of the two tensors are equal in the system (x r

because of (A.2). Except for possible sign differences, due to its symmetric

and skew-symmetric properties the covariant R-tensor has only six distinct

components (in three dimensions). This fact is exploited iii the body of the

present study.

To relate the partial derivatives of the two kinds of the R-tensors in

analogy to (A.4a-c) we first deduce the partial derivatives of g at P:

agrs /ax t = 0 (A.8a)

2grs t k r s ka g lax ax -au' 1' rt )lax (A.8b)ts tr

3rs t k u 2 r s kua g /ax ax ax = -a 2rts + tr)/ax ax, (A.8c)

etc. Although the right-hand sides of (A.8bc) are equal to the negative of the

right-hand sides of (A.4bc). such a relationship does not exist beyond the

third-order partial derivatives. However, the pattern for the n-th order

partial derivatives is the same as that described following (A.4c). Numerical

values of individual components of the two R-tensors and their partial

derivatives are related here by

R u = (A.9a)
.ljk uijk
u xtt

aR /ax t = aRuk /axt (A.9b)
.IJk uijk

2 u t Ua R taxtax - a R /axtax - R u  + rm )/ax p  (A.9c)
.4k uijk mijk tm tu

etc., where (A.8b) has been utilized In (A.9c). (In the latter, the summation

convention for the index m applies regardless of its position.) An n-th order

(n.l) partial derivative of R can be shown to comprise an n-th order

partial derivative of R plus terms containing products of (n-2)-th,

(n-3)-th, etc., down to O-th order partial derivatives of the covarlant R-tensor

with the first-, second-, etc., up to (n-l)-th order partial derivatives of the

C-symbols. The pattern shows a certain symmetry. For example, If n=4, these

terms comprise products of second-order partial derivatives (or 2-derivatives)

of the covariant R-tensor with 1-derivatives of the C-symbols, 1-derivatives of



the covariant R-tensor with 2-derivatives of the C-symbols, and 0-derivatives of

the covarlant R-tensor (i.e., the tensor itself) with 3-derivatives of the C-

symbols. The .ove equations, as all equatiois in this appendix with the

exception of (A.5), apply in the locally Cartesian system (x r } at P.

If all components of the covariant R-tensor are zero, i.e., If

Ruijk = 0 , (A.10)

so are the components of the R-tensor (see the formula below equation A.7).

Although this is true in all coordinate systems, we utilize it only for (x r}.

Equation (A.7) Indicates that in such a case It is permissible to adopt

aru lax/ = 0 (A.11)

ik

where the indices u, i. k, and j are unrestricted. From (A.5) we observe that

the local system is now Cartesian to at least a second order. The strategy of

adopting a choice of the kind (A.11) stems from the fact that If all orders of

partial derivatives of the C-symbols are admissible to be zero, then the system

(x r ) is admissible to be globally Cartesian and the space must be flat.

On the other hand, if (A.O) is not valid for all components, neither is

(A.11), and the system is Cartesian only to a first order. We can build the

metric Lensor grs in (A.5) by computing the values of the partial derivatives

of the C-symbols. In this process, we conveniently set to zero those values

that are not constrained otherwise. In particular, due to the properties of the

two R-tensors, all components of these tensors in (A.9a) are zero if J=k and/or

u=i. Accordingly, (A.7) allows us to set

aru /axk = 0 an /axi = 0 (A.12)ik ik

where the indices are unrestricted (here the repeating Indices do not entail the

summation convention). As an alternative, one could keep the first equation in

(A.12) intact but, instead of the second equation, adopt aPi /ax =. This

would yield ar /ax =R as opposed to the second equation in (A.12). Upon
using (A.12) and the symmetry property of the C-symbols, the remaining elements

of these symbols at P can he found from (A.7) and then utilized in (A.5).

To express higher-order derivatives of the C-symbols with respect to the

coordinates (xr}, we differentiate (A.6) and specialize it for P:
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2 2tu k = u k

ark r/ax axt a riaxkaxt + 8Rlijk /ax (A.13)

In working systematically with the covariant R-tensor, we can replace the second

term on the right-hand side by its equivalent from (A.9b). In paralleling

(A.10-11), we then state that If It holds true for all elements that

tlRuijk/ax = 0 (A.14)

it is admissible to adopt

a2ru /axJaxt = 0 (A.15)

1k

where the indices are unrestricted. This expression can then be substituted

into (A.5). It follows that if both (A.10) and (A.14) are valid, the system

{x r ) is Cartesian to at least a third order. On the other hand, even when

t
(A.14) does not apply, it is still true that aRU ijk/ax =0 if j=k and/or u=i.

According to (A.13), in this case It is admissible to set

2 u xk xt 0 2F/X jt
a /axax = ar'/axiax = 0, (A.16)

1k ik

which is in a close analogy to (A.12). The remaining elements of the doubly

differentiated C-symbols can be found from (A.13) and utilized in (A.5).

In differentiating (A.6) twice and specializing it for P, one has
31,u k t=p32u

a /axiaxtaxp a 3 ru/axk ax taxP + a2 R /axtaxP
ik iiijk

- (arm /axt)(aru /axP) - (arm /axP)(aru /axt)
1k mj ik mj(r./xtaUm ink/x)

+ (arm/axt)(a ik/axP) + (armj/axP)(aru /a ) (A.17)ii mk ii m

An n-th order (n>2) partial derivative of the C-symbol can be shown to contain

another n-th order partial derivative of the C-symbol, an (n-i)-th order partial

derivative of the R-tensor, plus terms containing products of (n-2)-th,

(n-3)-th. etc., down to the first-order partial derivatives of the C-symbols in

a somewhat symmetric manner. For example, if n=5, the latter terms contain

products of 3-derivatives with 1-derivatives, and of 2-derivatives with

2-derivatives (of the C-symbols).

Working again (n>2) in terms of the covariant R-tensor and considering, for

example, n=3 and thus (A.17), we can replace the second term on the right-hand

side by Its equivalent from (A.9c) Involving compatible products of the C-symbol

derivatives. If, in addition to (A.1O) making (A.11) admissible, we also have
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a2R u  
x P

a R . /axtax= 0 (A. 18)

it Is further admissible to set

a 3k /axJaxtaxP = 0

which we can then substitute into (A.5). Consequently, if all of (A.10),

(A.14), and (A.18) are valid, the system (x r ) is Cartesian to at least a fourth

order as can be confirmed upon consulting the last paragraph of Section A.1.

If (A.18) does not apply, the consideration of j=k and/or u=i can be used for

choices analogous to (A.16), but only if the first-order partial derivatives of

the C-symbols presented in (A.17) are zero. However, such a restriction does

not curtail the possibility to compute the third-order partial derivatives of

the C-symbols. When compared with the cases where n<3, the present procedure

may simply have to resort to (A.17) for additional elements for which the zero

values would produce a conflict. After the triply differentiated C-symbols have

been formed, they can be utilized in (A.5) In accordance with the description

below (A.4c).

The foregoing contains all the information necessary to proceed to any

order of partial derivatives of the C-symbols, and to Include any number of

terms In the Taylor-series expansion of the metric tensor in (A.5). The entire

development is based on the covariant R-tensor. If it holds true for all of Its

elements (or, equivalently, for its six independent elements) that

R u constant = 0 (A.19)

uljk

I.e., that all of (A.1O), (A.14), (A.18), etc., at the point P apply, then all

orders of partial derivatives of the C-symbols at P are admissible to be zero,

the system {xr ) Is admissible to be globally Cartesian. and the space must be

flat. (Consistent with this statement, equation A.5 yields [g rs]constant=I.)

It Is readily apparent that the converse is also true. Equation (A.19) and its

consequences just stated are crucial elements in the present study.

As a parenthetical note, we state that the zero value of the covarlant R-

tensor at P, as well as the zero values of all its spatial derivatives there,

are equivalent to this tensor bing zero at all points of the space. Clearly.

if the covariant R-tensor and all its spatial derivatives are zero at P, then

this tensor is zero at any point of the space, as per its Taylor-series

expansion from P. The converse is also true. For. suppose that the covariant



R-tensor is zero at P as well as at every point of the space, and that the

(zero) value of this tensor at every point is expressed in the Taylor series

around the (zero) value at P. Due to the independence of the individual terms

of the series, and to the series being identically zero, the linear term for any

point must be zero, the quadratic term for any point must be zero, etc. But

since the linear term equals the partial derivative on the left-hand side of
t t(A.14) contracted with Ax , and this term must be zero for every Ax . it follows

that the first-order partial derivative in (A.14) must be zero. A similar

outcome is noted for the (symmetric) partial derivatives of higher orders.

In returning to (A.19), we state that if this equation does not apply, the

system (x r ) is Cartesian to a certain order. As has been demonstrated, if. at

P, the partial derivatives of the covariant R-tensor are zero up to and

including the n-th order (n=O corresponds to the original tensor), but not

beyond this order, the system is Cartesian to an (n 2)-th order. We have means

at our disposal to express the metric tensor in (x r} at an arbitrary point P'.

In particular, in using the values of the covariant R-tensor and its partial

derivatives at P, we can form the R-tensor and its partial derivatives at P.

This, in turn, leads to an evaluation of the partial derivatives of the C-

symbols at P (where the symbols themselves are zero), and, with the aid of the

Taylor-series expansion, to an evaluation of the metric tensor at arbitrary

locations. We have thus developed concrete means by which to describe the

space, based on the locally Cartesian coordinate system (x r at the point P.

A.3 Cartesian Triad

In Section A.1, we have presented the orthonormal triad A, B, C at the

point P. oriented along the coordinates lines of the locally Cartesian

coordinate system (xr ). The components of the Cartesian triad have been listed

in (A.3). The covariant differentiation of A yieldsr

A aA /ax - P Ars r rs I

which, by virtue of the definition of A in (A.3) and of the system {x r isr

zero. A similar outcome is reached for B and C so that we have
rs rs

A = B = C = 0. (A.20)
rs rs rs
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This is a tensor equation at P, valid in any coordinates. Here it will be used

only in the coordinate system {x r}. Equation (A.20) has nothing to do with the

curvature of the space, which does not affect the first covariant derivatives of

vectors (and the second covariant derivatives of scalars).

If we differentiate A , 8, and C covariantly in {xr ) at P we havers rs rs

1  t 2 t 3 t
A rt= -arr /3x , Br = -arr lax , Crs =-arr /ax . (A.21)=s rs ' rst rs rst rs "

which shows that Ars t  B rst , and Crs t are symmetric in the first two indic-s.

If the system (xr) is Cartesian to at least a second order. i.e., if

ari /ax t = 0 (A.22)
rs

where the indices are unrestricted, it follows that

A = B =C =0. (A.23)
rst Brst rst

Conversely, if (A.23) holds true, then (A.21) is equivalent to (A.22) and the

system is Cartesian to at least a second order. We note that (A.23) appears as

(2) in the body of the present study.

In employing the covariant R-tensor, we can make a useful deduction related

to (A.23). We begin by assuming the following tensor equations, considered at P

in the coordinate system (x r:

Arst = Arts ' Brst Brts C rst C rts (A.24)

The first of these equations is expressed here as

A -A = R =R Au = R1  =R =0

rst rts .rst urst .rst lrst

which holds true for unrestricted r, s, and t. The same argument repeated for B

and C shows that

R rst = 0 (A.25)

where also I Is unrestricted. In recalling the path irom (A.10) to (A.11). we

deduce that (A.22) is admissible. But this outcome has already resulted above

in (A.23), a tensor equation valid in any coordinates. We have thus established

that In spite of (A.24) appearing weaker than (A.23), the two equations are

equivalent.



The system {xr } would be Cartesian to at least a third order if It also

held true that

a2r I /axtax p = 0 (A.26)
rs

In differentiating covariantly A , B , and C three times in succession and
r r r

considering the results to apply at P as usual, we have

A a rl /ax axu B -a 2r 2lax taxurstu rs rstu rs
.2 F3 tu

C -o /r axtaxu
Crstu rs

where only the definition of (x r}, implying (A.1) and (A.20), has been used.

Equation (A.26) is thus seen to be equivalent to

rstu rstu Crstu 0 (A.27)

which is listed, in a similar context, as equation (3).

An n-th order (n>3) covariant derivative of A comprises the minusI r
(n-l)-th order partial derivative of P I plus terms containing products ofrs(n-3)-th, (n-4)-th, etc., down to the first-order partial derivatives of the

C-symbols. Thus, as (A.5) indicates, If the system Is Cartesian to an n-th

order, it entails a relation similar to (A.27) but corresponding to an n-fold

covariant differentiation. Conversely. If such a relation, as well as relations

of this kind expressing all of the lower orders of covariant differentiation,

hold true, then the system is Cartesian to an n-th order. In summary, if k is

the highest order of covariant differentiation that has not yet breached the

validity of a relation of the type (A.27), then all orders in the range 1

through k-1 of partial derivatives of the C-symbols produce zeros as admissible

results, and the system (x r ) is Cartesian to a k-th order.

To justify the statement of equivalence made in the Introduction in

conjunction with equations (2) and (4), we consider an arbitrary vector k at the

point P, and perform

k k Ru k =R ku
rst rts .rst u urst

The vector k can be expressed by means of A, B, and C as

ku = aAu + bBu + cc

which, when substituted in the above equation, yields
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krst - krts = aRlrst + bR2rst + CR3rst ' (A.28)

where a, b, and c are arbitrary scalar invariants (including arbitrary

constants). If {x r } is Cartesian to at least a second order so that (A.25)

applies, it follows that

krs t = krt s  (A.29)

Conversely, if (A.29) holds true, then, due to the arbitrariness of a, b, and c,

equation (A.28) yields (A.25) and thereby also (A.23). We remark that although

(A.29) implies that the covariant R-tensor is zero at P. it has no connection to

the partial derivatives of this tensor. The above represents one approach to

establishing the equivalence of the tensor equations (A.29) and (A.23).

We can also begin with the tensor equation

k = aA + bB + cC,r r I

differentiate it covariantly twice, interchange the second and the third

indices, and form

krs t - krts = a(Arst - A rts ) + b(Brst - B rts ) + c(Crs t - C rt) (A.30)

This result would have been obtained even without taking advantage of (A.20),

and regardless of whether a, b, and c are arbitrary scalar invariants (functions

of position) or arbitrary constants; in either case we have ast=ats. b S=bts,

c st=Cts (in the latter case these equations would become the Identities 0=0).

If we make the substitution seen below (A.24) with respect to A, and similarly

with respect to B and C, we recover (A.28). However, in working directly with

(A.30), we observe that if (xr } is Cartesian to at ieast a second order,

equation (A.29) follows. Conversely, if (A.29) holds true, equation (A.30)

indicates that (A.24) and thereby (A.23) must be true as well because of the

arbitrariness of a, b, and c.

We have thus shown the equivalence of tensor equations (A.29) and (A.23).

In conclusion, (A.29) does not Imply that the space is flat, only that the

system (xr ) can be Cartesian to at least a second order. If (A.27) is not

satisfied, xr ) is Cartesian only to a second order. If it is satisfied, as

well as all the other relations of its type (for covariant differentiation of

any order), then (x r) can be globally Cartesian and the space must be flat.
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APPENDIX B

TAYLOR-SERIES EXPANSION OF METRIC TENSOR IN POLAR COORDINATES

In a general three-dimensional space, the metric tensor in the coordinates

symbolized by (x r}. r=1,2,3. can be expanded in the Taylor series as follows:

grs = rs + (agrs/axP)AxP + (1/2)(a2 g rs / xPaxq) AxAxq + ... . (B.1)

Here grs is the metric tensor at a point P and gr's is the metric tensor at a
pon ';frh r = A r _ r rr

point P'; further, x symbolizes the coordinates of P and x'

symbolizes the coordinates of P'. In accordance with §3-12 in [Hotine, 19691,

we have the tenscr equation

ag /axp -t _ g = 0grs,p =- _ p r g t s  rSPgtr

This yields

ag /axP 4 gt

rs rpts sp tr (B.2a)

from which It follows that

2 p  q  t t qagrs aurpts + rp P gtr )  . . (B.2b)

The Taylor expansion is formalized by substituting (B.2a,b) into (B.1).

In a two-dimensional space, where the coordinate system is symbolized by

ua2. a=1.2. the above outcome is rewritten as

a; = a + (r + ra )AuT + (1/ 2 )[a(rW a
! a7 A 7 a ar w

+ ra )/au 6]AuAu5 + (B.3)awa +..

If we now stipulate that the two-dimensional space is flat, i.e., a plane, and

define the coordinates as r (distance from the origin) and 0 (angle from a given

axis x), i.e., as polar coordinates, we have (ua )(r.6) and

2 2 2 2
ds =dr + rdO (B.4)

The metric (B.4) implies the following metric tensor (in matrix notation):

(a [1 2] (B.5)
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Equation (B.5) can also be deduced via a transformation of coordinates

between the systems (ua}(x,y) and {ua} (r,8). In particular, the

transformation formula

a = (au /aua )(al /au)a .

if applied to overbarred coordinates as Cartesian xy, yields

[aa] = [alr/aulIT[aur/auo]

Since x=rcosO and y=rsinO, we have

-x/r -y]
[auT/aua] Ly/r xj

and (B.5) follows, for a given point, upon using x +y 
=r

To express the Christoffel symbols (the C-symbols), we use the notational

convention of §3-1 in [Hotine, 1969]. Thus, we write

rp = agr(BT

0a [a ,7i , (8.6)

where

[aO,T] = (1/2)(OaOr/aua + aa/aup - aa /auT ) (B.7)

Since a aIT =6a ', i.e., [a a] and [a"] are inverses of each other, in

reference to (B.5) one has

[ap T ] = L 10r2j (B.8)

Equation (B.7) in conjunction with (B.5) yields, upon arranging the entries

for a and 0 in [aO,T] into a matrix for a given r:

[,11 = j 0] [ao, 2) =K r

Similarly, for a given u, the C-symbols Vu are presented as

r1 =[0 0] r2 = [1k /r

a -r _r 0
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(In this paragraph we refrain from using brackets on the left-hand sides,

normally symbolizing matrix notation.) Since

ala wo 0 r Pa2a

and similarly for a (the interchange of a and entails a transposition).

we have

a a 1.. [o0 ~ 0. 0 0 ...ay ra0 + r, a 0r . for T = 1 -- 0 . for T = 2

~~ ~2rj K~
Accordingly,

(1/2)a(r' a + r' a j 0 0 ... for r = 6 = 1

0 ] ... in the other three cases.

With the above development, (B.3) yields

[a;,] = [a + Ar + Ae + Ar2 + OArAB + 0itr + 0AO

where the third- and higher-order terms are zero in this example. We then have

[a.'] = [ 2] + [ 3 + [ 2] (B.9)

But this is

[a;,] = [ (B.9)

where

r' = r + Ar
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Thus, (B.9) corresponds to (B.9'), where r'2 is developed via the Taylor-series

expansion as

r2 2 2
r = r + 2rAr + Ar

The present simple example illustrates that individual components of a'

may be developed via the Taylor series. The component results may be grouped

together in a convenient form, such as (B.3). From their construction, the

terms on the right-hand side of (B.3), except for the first, are not tensors but

expressions of a given order in coordinate differences. Clearly, the convenient

grouping of components that gives rise to such expressions cannot in Itself

create tensors. However, the fact that (B.3) is not a tensor equation does not

detract from its usefulness.
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APPENDIX C

DETAILED DERIVATION OF EIGHT CURVATURES

The eight curvatures listed in Section 3.1 will now be derived in detail.
These curvatures consist of five curvature parameters k1V k2 - t1 , 711 and r2,

and three additional curvatures a1 , a2, and FI; as stated in Section 3.1, they

correspond to the orthonormal triad A, p, v. In conjunction with a more general

orthonormal triad 1, j, P, the eight curvatures are denoted, in the same order.

as k, k*, t, r1i T2' a. a*, and e3" Except for the three barred quantities

newly introduced, the notation is adopted from [Hotine, 1969]. abbreviated as

[H. Although some of the latter eight curvatures are derived in Chapter 7 of

[H] (see equations 7.04, 7.03, and 7.08 for a, k, and t, respectively), here we

begin with a complete development associated with the general triad I. j, V, and

subsequently transcribe the results for the triad A, j, v. This will help In

making the present study as self-contained as practicable.

C.1 Development Associated with the General Triad

The extrinsic properties of surface curves are developed upon considering

such curves in both the space and the surface context. At a given point P. the

unit tangent vector to a surface curve Is denoted 2, and the orthonormal surface

vector is denoted J. As in §7-1 of [H], I and j are also considered to be unit

tangents to a family of surface curves and to a family of their orthogonal

trajectories, respectively. This interpretation allows us to differentiate 2a
or ja (or other tensors defined along a line) covariantly with respect to

surface coordinates; subsequently, the application of such a differentiation can

be restricted to a particular line at a particular point. As is explained in

§4-1 of [H], similar considerations regarding families of lines are valid In

three dimensions.

With v denoting the unit normal to the surface at P. we define 2, J, v as

a right-handed orthonormal triad. This triad is called "general", since Q and j

are not restricted to follow any particular surface directions. The development

will! not be affected by the curvature of the space because no double covariant
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differentiation (in space) will take place, and, therefore, the same formulas

will be obtained whether the space is flat or curved.

The present geometrical situation is depicted in Fig. 1 below, which Is

essentially Fig. 6 in [H]. In addition to the vectors £, J. and v, the figure

shows the unit vector m, the principal normal to the curve whose unit tangent is

9, and the unit vector n, the binormal. Similar to 9, J, P. the vectors 2, m.

n also form a right-handed orthonormal triad. Except for 2, pointing into the

plane of the paper, the remaining four vectors lie in the plane of the paper.

surface

\ /2 -0

n

Fig. 1

The first part of the development follows essentially §7-1 through §7-4 in

[H]. The preliminary formulas needed for this part are listed below. In the

surface context, we have

S= a + *jj 0  (C.1)

which is the first equation in (4.11) of [H]. This readily yields

at = oJa , 2 jGa = a , (C.2a,b)

where (C.2a) is (4.07) in [H]. In the space context, (C.2a) corresponds to

2 rs = xm , (C.3)

which is the first of the three equations in (4.06) of [H], known as the Frenet

equations. The quantities X and a are respectively the principal and the

geodesic curvatures of the curve; in analogy to other quantities associated with
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j and distinguished by an asterisk, a* represents the geodesic curvature of the

curve's orthogonal trajectory (in the direction J).

We will also need

xrr + .r. (C.4)axr/au xa a a

which corresponds to (6.02) and (6.09) in [Hi, except that here the surface

coordinates are symbolized by u a ) instead of (x a. Finally, (6.16) In [H]

7 ives

r b r (C.5)

ap ap

the symmetric surface tensor b a is known as the second fundamental form of the

surface. We note that all of the tensor equations (C.1-5) apply at the point P.

rThus, all of the tensors in these equations (including the mixed tensors x arP A

aparas well as the scalar invariants a, o*, and z) belong to P.

We begin the first part of the development with (6.07) in (H]:

r r a
xa

whose surface covariant derivative with respect to up is

r s r Ca r asx =x xa + x

grn 0 rp a
r and C a could also be written as ars and Ca , respectively. Upon using (C.5).

(C.4), and (C.1) with the Index a raised, it follows that

ars = ur(b aa) + jr(GaC + a*j )

which Is (7.01) in (H]. The contraction with e (where, on the left-hand side,

Hotine's formula 6.07 Is again used), the lowering of the space index r, and the

utilization of (C.3) result in

e s = Xm = V (bapa Q) +j r (C.6)
rs r r a Jr '( 6

corresponding closely to (7.02) in (H). rnis equation confirms that the vector

m lies in the plane containing j and P.

From Fig.1 It follows that

r r
m l =coso m i = sinO (C.Ta.b)

L" r
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Furthermore, we define an invariant k as

k = xcos0 . (C.8)

Finally, we recall from (3.19,20) in [H] that if p and q are two orthonormal

vectors, it holds true that

r r rPrs p  = 0 Prs q  = qrs p  (C.9a,b)

which applies also in two dimensions. If we now contract (C.6) with V' and use

(C.7a,8,9b), we obtain

r s r s (t
k = XcosO = Qrs -i rs = b (C.10)

rs r

which corresponds to (7.03) in [HI. Further, if we contract (C.6) with jr and

use (C.7b,9b) as well as (C.2b), we find
o =xsin0 = Qr jr~ _ Jrrs .a a

rs rs r rs a aClla= sn s r E ap Q -Jap ' (C.11)

which corresponds to (7.04) and the subsequent equation in [HI. Due to (C.9a),

the contraction of (C.6) with kr merely yields the identity 0=0.

Equation (C.10) shows that k is the same for any surface curve in the

direction a, since ba Q ag depends only on b a (a point function) and the

direction 2, not on any particular curve in this direction. In §7-03 of [HI.

this quantity is identified as the normal curvature of the surface in the

direction Q. In reference to (C.11), if

a = 0 , (C.12a)

i.e., if the curve Is a geodesic, in general (xiO) it follows that

0 = 0 , (C.12b)

and, according to Fig. I and equation (C.10), also that

m E , k = x (C.12c,d)

In this case, the principal normal coincides with the surface normal, and the

normal curvature of the surface in a equals the space curvature in k, as is

explained in §7-04 of [Hi. In general, the first equalities In (C.10,11) relate

the curvatures x, k, and a by

2 2 2
X =k + a , (C.13)
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this equation could be used to define the normal curvature through

2 2 2

k = -a

The second part of the present development parallels the first part, except

that the direction considered is j instead of i. Accordingly, the pertinent

quantities are attributed an asterisk to distinguish them from their

counterparts dealt with previously. This applies, specifically, to the

curvatures a, X, and k (along 2) being replaced by a*, x*, and k* (along J),

respectively, as well as to the vectors m and n being replaced by m* and n*. and

to the angle 8 being replaced by 8*. The vector a is replaced by j while the

vector j is replaced by -k, since the positive rotation from j is toward -a.

This situation is depicted in Fig. 2, whose construction Is conceptually similar

to Fig. 1.

surface /

/
/ 2*\ 11

.\ i/2-0"

\ n*

Fig. 2

Instead of (C.l-2b) as preliminary formulas, we now use the second equation

In (4.11) of [H], and write

JaO = -oka2 2 a*J i: (C.14)

jai 0 -*2a J a - (C.15a.b)

In analogy to (C.3), we have

J .s = X .m* (C.16)rs r
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while (C.4,5) need no modification. Similarly to the first part, we begin the

development with

.r =r a
Sxai

which, when differentiated covariantly with respect to u 0, yields

r s r .a r.a.x = x j +x Xs 0 ap

Upon using (C.5), (CA4). and (C.14) with the index a raised, it follows that

rjX s= (b i a) _ r (,, + u*j)st

The contraction with j ,the lowering of the space index r, and the utilization

of (C.16) result in

.i x ~ =*M i (b .a. . (C.17)rs r r ap r

This equation parallels (C..6). but is without an equivalent In [H].

With the aid of Fig. 2. the expressions paralleling (C.7a~b) are seen to be

M* ,r =Cos 0* . *,r = sinO* (C. 18a,b)r r

the expression paralleling (C.8) is

*= x*cosO* .(C. 19)

To obtain relations paralleling (C.10,11). we contract (C.17) in turn with P r

and -PJ. and use (C.18a-19) as well as (C.9b) and (C.15b):

k*=x* cos 0* = J s r j rs j .r js = b a.aj (C.20)

a= x*sinO* = - rs = Q r r s = -j -a9Qa10 p (C.21)

the contraction of (C.17) with Jr would yield the identity 0=0. Here k* again

depicts a property of the surface, this time in the direction J, and, in analogy

to (C.12a-d), the geodesic in this direction is characterized by

*= 0 0* = 0 ,(C. 22a ,b)

M*=Li k* = * (C.22c~d)

2 2 2In paralleling (C.13), we now have x* = k* +a*
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In the third part of the development, we return to the curve In the

direction 9 and recall the third equation from (4.06) in [H]:

s -rm (C.23)
rs r

where r is the torsion of the curve. From Fig. 1 we deduce that

n = r sinG - J cosO

which, when differentiated covariantly with respect to the arc element ds of the

curve (interpreted in a usual manner as a member of a family of curves), yields

n rs -im = V rs sine - Sj 2 5 cos0
nrs r rs - rs

+ (U r cos0 + ir sin0)dO/ds , (C.24)

r
where (C.23) has been incorporated. Upon contracting this equation with j , and

considering (C.7b) and (C.9a,b), it follows that

(r + dO/ds)sinO = - jrsi SsinG = j rsv 2 sin

With the exception of sine being replaced by cos6, this relation is obtained
r

upon contracting (C.24) with Pi and considering also (C.7a). Thus, for any 0,

we have

r + d=/dsr V rs (C.25)ded rs rs3

which is (7.05) in [H]. Since for a geodesic It holds true that 0=0 and hence

dO/ds=O, the right-hand side of (C.25) gives the torsion of a geodesic.

As a matter of interest, (C.25) applied to a geodesic can be derived
r

separately as follows. First, (C.24) Is contracted with m :
rs rs rs 2co2

n m r = Vi m 2 sin8 - j mr cos9 + (Cos 2 + sin 2)dO/dsi-S is rS

or

z + dG/ds =rs in 2 ScosG - i m sine

For a geodesic, (C.12c) Implies that

m =_ 
$

and (C.12b) Implies that

0 = 0, dO/ds= 0



as has already been stated below (C.25). We thus have

r = rrsjrs

confirming (C.25) for a geodesic.

To derive another form of r+dO/ds, we rewrite (6.19) of [H]:

V xrx = brs a a
rsaa a~

which we contract in turn with j and ka . In using the formula of the

type (6.07) in [H], we obtain

-rs r a = V rs a rs = b = b ap , (C.26)

where the last equality justifies the others; this equality stems from the

symmetry of b The quantity b aj , which depends on t;,e point function

b and the direction 2 but not on any particular curve in this direction, is

denoted t in §7-5 of [H], and identified as the geodesic torsion of the surface

in the direction 9. In collecting the expressions in (C.25,26), which all

determine the same quantity r+dO/ds, and apply (C.9b) in one additional

instance, we write

t = + dO/ds = rsVra s  - r s r r , s = U urr -S
rsrs rs rs

=b a A= a (C.27)

This relation corresponds to (7.08) in [H].

The fourth part of the development parallels the third part, except that

the direction considered is j instead of 9. We have seen a similar distinction

between the second and the first parts. Here again, the explicit development

presented below is not contained in [H]. in analogy to (C.23), we now have

n* s -r*m* , (C.28)
rs r

while from Fig. 2 we deduce that

n" = v slnO* + t cosO*
r r r
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whose covariant differentiation with respect to the arc element ds* (along J)

yields
sS *

n*j = -r*m* = ' jS sin8* + Rs cos*
rs r rs rs

+ (vr cos* - 9 sinG*)dG*/ds* (C.29)
r r

r r
In contracting (C.29) in turn with R and . and considering (C.18ab)

and (C.9a,b), we obtain

r* + dO*Ids* = -Rrs Vrs(.0= r- s rs(C.30)

rs rs

multiplied in the former case by sin8*, and in the latter case by cosO*.

Accordingly, this relation holds true for any 0*. (Similarly to the discussion

below equation C.25, upon contracting C.29 with m*r it can be showed separately

that C.30 is valid for a geodesic.) From the first equality in (C.30), we

observe that r*+dO*/ds* is the negative of r+dO/ds in (C.27). In analogy to

its counterpart, r*+dO*/ds* depends on the direction j but not on any particular

curve in that direction; it is denoted t* and identified as the geodesic torsion

of the surface in the direction j. Thus, we have

t* = -t.. (C.31)

As stated in §7-6 of [H], the sum of the geodesic torsions in any two

perpendicular directions is zero.

In the fifth part, we follow essentially §12-17 in [HI, but consider the

more general directions 2 and j instead of A and p. As in [HI, the starting

point is provided by the notion of N-surfaces defined by N=constant. Thus, the

gradient vector at a given point is perpendicular to the pertinent N-surface,

and can be written as

N = nr , (C.32)r r

where n is the magnitude of N (not to be confused with the binormal n dealtr

with previously), and v is a unit normal to the N-surface (earlier referred to

simply as surface). The covarlant differentiation of (C.32) yields

N =n L + nP
rs s r rs

where the tensor Nrs is symmetric In r and s. If we interchange r and s, and

subtract, we obtain (12.018) of [H]. The subsequent contraction with vS gives
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S nlS
nfrsd = n - (n )Li

rs r s r

which is (12.019) in [H]. However, in our general context, n is expressed asr

n = (n R ) + (n ,j )j (n s V )vinr nsS £r * (nj~ r s r

resulting in

nrs = (n s ) + (n s  )j

Upon the division by n, the last equation becomes

Vs = lr 2 2r (C.33)

where

- S
= (nsS )/n - (1/n)an/as

2= (nsj )/n E (1/n)an/as*

ds and ds* being length elements in the directions 2 and j, respectively. If we

contract (C.33) in turn with Rr and jr, and use (C.9b), we can express and

72 more completely:

-= s rs rs
= (nsS )/n = v rs a = -krs V V (C.34a)

s r s r s
T2= (nsj )/n = rs j = -J rs V (C.34b)

We remark that If r is the principal curvature in the direction ., and w is the

principal normal, (C.33) can be restated as

Twr = 71ar + 2Jr (C.35)

Consistent with §12-17 in (H], the principal normal is seen to be an N-surface

vector. In writing (C.35) with the index r raised, and contracting the two

equations, we also have

2 2 2
7= + (r2)

Finally, in the sixth part we give the motivation for defining a quantity

called e3 If we seek, for example, the intrinsic derivatives of a (the unit

tangent to an N-surface curve) with respect to length elements in the 2, j, and
.~~ . sRsS an s  w rie

P directions, i.e., if we seek R rs , R . and £ LP , we arrive at
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expressions where all of the needed tensor invariants have already been formed

except for one, denoted 3

r = Jrs -j rVs (C.36)

This can be seen as follows. In considering a general expression of the form

r t r t r thr = (ht )£ + (hj~ r + (tt

where h is a covariant vector or the gradient of a scalar. in conjunction withr

(C.9a) we have

9rs = s ts9i )Jr + (ts s )V r =j r + kv r
r (2 j~j +Qr r

rs (s r r r r

V (95 (Rts"i + (a Vi V V 31r 1)rs tsi r ts r 13r I

where, in the first line, we have used (C.11) and (C.10) giving a and k,

respectively, and in the second line we have used (C.21) and (C.27) giving o*

and t, respectively. The third line brings forth the new expression in (C.36),

as well as r- from (C.34a).
1i

C.2 Transcription for the Triad A, g, v

As has been indicated at the outset, the final step of the present

development consists in transcribing the main outcome of the preceding section

from a general orthonormal triad 1, J, P to the orthonormal triad A, P, V. The

curvatures to be transcribed have been derived in the order: k in (C.10), a in

(C.11), k* in (C.20), a* in (C.21). t in (C.27), T1 in (C.34a), T2 in (C.34b),

and e3 in (C.36). Since t==-t according to (C.31), no transcription is needed

for t*. The transcribed curvatures will be presented in the order just listed,

where the expressions not containing the orthonormal vectors will be omitted.

The three overbarred quantities will have the overbar removed; of the other

curvdtures. Lhube absu~tlad with the direction A (replacing 9) will be

attributed the subscript 1, and those associated with the direction p (replacing

j) will be attributed the subscript 2.
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Below we list the transcribed curvatures in terms of the orthonormal

vectors A. /. and v.

k A rs - Ar) s b a AA (C.37)
1 rs rs a

a, = A rs A rs = A A= -ap A A (C.38)

r s r s baf3Jl
k2 = p rs V P 's rs = b (C.39)

= Ar s r s _ a A (C.40)
2 = rs A = Ars 9 P = = A , (C.40)

rs r s r s r s
I = rs rs rs rs

=b a a b aA (C.41)

T 1 = rs A V A rs Vs (C.42)

T2 = rspV = -P rsU rs (C.43)

3=  rs s  2rs
=A pr'= -grs A r (C.44)

As has been indicated, there is no need to list t2. Since t2 =-t I , this

quAntity would give rise to no new contractions.
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APPENDIX D

DETAILED DERIVATION OF LEG DERIVATIVES OF CURVATURES

D.1 Leg Derivatives of Curvatures Developed Using Space Vectors

In this section, equations (31a-i) are derived using the orthonormal

vectors A, g, and v in the space context. The initial equations serving in this

task are (13a)-(17). The covariant R-tensor and Its properties play a crucial

role here. In accordance with §5-4 and §5-5 in (Hotine. 1969], abbreviated as

[H]. this tensor is skew-symmetric In the first two and the last two (space)

indices, and symmetric with respect to the two pairs of indices:

Rurst = -Rrust I Rurst =-Rurts Rurst = Rstur (D.1ab.c)

From (D.la-c), or directly from (5.08) In [Hi, it follows that

Rurst = Rtsru * (D-1d)

The notation used in Section 4.1 for the leg derivatives, such as
t

(k I ) t k 1 /2  (D.2)

etc., and for contractions of the covarlant R-tensor, such as

R u A u. A A R(1,3,1.2) . (D.3)

etc., will continue to be used throughout; there Is no need to list the longer

expressions on the left-hand sides of (D.2,3). Accordingly, (D.la-d) yield

R(1,3,1.2) = -R(3,1,1,2) , R(1.3.1,2) = -R(l,3,2,i) , (D.4a,b)

R(1,3., 2) = R(l.2.1,3) R( .3.1.2) = R(2,1. 3,1) , (D.4c.d)

Indicating that the numbers inside the parentheses can be manipulated similar to

the Indices of the covariant R-tensor.

Further, due to the fact that

Ru  u

RU A = R AU
.rst u urst

we can write

Ru  Vr A spt = R(1,3,1,2)
.rst u7
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However, since according to (5.02) in CHI one has

-A =Ru A

rst rts .rst u

it follows that

(A - A rV A sit R(I.3.1,2) (D.5)rst arts)

i.e., the numbers inside the parentheses attributed to R reflect the ranking

of the orthonormal vectors in the complete expression on the left-hand side.

provided the contracting indices are properly ordered. Finally, the results

in the present development are formalized with the aid of (18a)-(19c).

We are now in a position to derive (31a-I) in a direct and expeditious

manner. From the first alternatives in (14a) and (15), we form

A rAs t vrAs t r s t
1/2 rst rs t rs t

r s t r s t r s t
t 1/1  A rstv P + Ars tA +A rs t A

where expressions of the type (D.2) have been utilized. (Such manipulations

will no longer be referenced.) Due to the first formula in (18a) and the second

formula in (18c), symbolized as (18a)-I and (18c)-2, the second term giving k1/2

Is -k2 a while due to (19b) and (18a)-2. the third term is t1a2-t1Il. Due to

(18a)-2 and (18c)-1, the second term giving ti/1 is -tl a2 ; while due to (19b)

and (18b)-1. the third term is -k1 aI-tir1 . Next. the (dummy) indices s and t

in the first term giving t 1/1 are interchanged, and the entire equation is

subtracted from that giving k /2. Upon considering (D.5). the first term of the

resulting equation Is R(1,3,1,2); the other terms are obtained by subtracting

-tIa 2-k1aI-t 1r from -k2a1+tIa 2-ti1r as indicated above. Accordingly, we have

k/2 - t1/1 = R(.3.1,2) + (k -k2 )a + 2tl a 2 (D.6)

which is (31a).

Similarly, from the first alternatives in (14a) and (16a), we form

rst rst rst
1/3 rst rs t rs t

-A V rV sA - A V rV sA - A V rV sAtrst rs t rs

Due to (18a)-i and (18c)-3. the second term giving k1/3 Is 72 aI; while due to
2

(19b) and (18a)-3, the third term Is t 83 +71 . Due to (18a)-3 and (18c)-1, the

73



second term giving y1/1 is t1 3; while due to (19b) and (18c)-1. the third term
2 2

Is k1 +t Next, the indices s and t in the first term giving 71/1 are

interchanged, and the entire equation is added to that giving k1 /3. Upon

considering the type of (D.5), the first term of the resulting equation is
2 2 2o+tI 7

R(l.3,1,3); the other terms are obtained by adding t F-3+k 2+t2 tor a +t 3- +r2

as indicated above. Accordingly, we have

2 + 72 + 2t + (D.7)
1/3 + /1= R(,3,,3) + k 1  + 1t3I 2

which is (31b).

From the first alternatives in (15) and (16a), we form

r s t r s t r s t
1/3 = rst V gV + rsVt V + rs VAtV

r s t rs t rs t

Due to (18a)-2 and (18c)-3, the second term giving t1/3 is r2 a2 ; while due to

(19b) and (18b)-3, the third term is -k18 3 + -1 r2. Due to (18a)-3 and (18c)-2.

the second term giving T1/2 Is k 23: while due to (19b) and (18c)-2. the third
term is k t +k2 t=2Ht where the statement below equation (30) has been taken

Into account. Next, the indices s and t In the first term giving r1/ 2 are

interchanged, and the entire equation is added to that giving t1/3. Upon

considering the type of (0.5), the first term of the resulting equation is

R(1.3.2.3)=R(2,3,1,3), where the type of (D.4c) has been included: the other

terms are obtained by adding k 2 3+2HtI to -2a2-k1 3+T1 2 as Indicated above.

Accordingly. we have

t1/3 + r1/2 = R(2.3.1.3) + 2Ht I + 71 7'2 - (k 1 -k 2 )F 3 + T22  , (D.8)

which is (31c).

From the third alternative in (15) and the first alternative in (14b), we

form

= r Is t +P Vr A s Ut +P Vr AS I t1/2 rst + rs t rs t

k rst rst r s t
k2/1 PrstI' P A+ PlrsVt A + 'rs V P t A

Due to (18b)-i and (18c)-2. the second term giving t i/2 Is t a ; while due to

(19c) and (18a)-2, the third term Is k2 a2-t1 T2. Due to (18b)-2 and (18c)-l.

the second term giving k2/ 1 is k1a2: while due to (19c) and (18b)-l. the third
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term is -tIa 1 -t' 72 . Next, the indices s and t in the first term giving k2i 1are interchanged, and the entire equation is subtracted from that giving tl/2.

Upon considering the type of (D.5), the first term of the resulting equation is

R(2.3.,1.2): the other terms are obtained by subtracting k1a2-tIa 1 -t1172 from

t1 a1 +k2a2 -t1r 2 as indicated above. Accordingly, we have

t1/2 - k2/1 = R(2.3.1,2) - (k1-k 2)a 2 + 2t. 1 (D.9)

which is (31d).

From the third alternative in (15) and the first alternative in (16b), we

form

rst rst rAs t
1/3 rst rs t rs t

JI Li Lirs V V ~ s A P i V Vr2/ rs t rs t

Due to (18b)-l and (18c)-3. the second term giving t1/3 is -r I1; while due to

(19c) and (18a)-3, the third term is k2 p-3+y1 2. Due to (18b)-3 and (18c)-1,

the second term giving r2/1 is -k 13: while due to (19c) and (18c)-1, the third

term is k1 t1 +k2 t=2Ht where the statement below equation (30) has been taken

into account. Next, the indices s and t in the first term giving 72/1 are

interchanged, and the entire equation Is added to that giving t /3. Upon

considering the type of (D.5), the first term of the resulting equation is

R(2,3,1.3); the other terms are obtained by adding -k1 3+2HtI to -7a 1 +k 23

+-1T2 as indicated above. Accordingly. we have

t1/3 + T2/1 = R(2,3,1,3) + 2Ht+ 7172 - (k1-k 2)a3 - 71oI . (D.10)

which is (31e).

From the first alternatives in (14b) and (16b), we form

2 rst rst rstk2/3 =I rsti /1 Li + rs LtY u + rs L t u

rst rst rst
2/2 -rst) ' P - rs t" P - A rs L Lt

Due to (18b)-2 and (18c)-3, the second term giving k2/3 is -r 12; while due to

(19c) and (18b)-3, the third term Is -t 1E 3 +r 2 . Due to (18b)-3 and (18c)-2,

the second term giving i2/2 Is -t IE3 : while due to (19c) and (18c)-2. the third
2 2term Is t 2 Next, the indices s and t In the first term giving r2/2 are

Interchanged, and the entire equation Is added to that giving k2/ 3. Upon

75



considering the type of (D.5), the first term of the resulting equation Is

R(2.3.2.3); the other terms are obtained by adding -t1 3 +t2 +k2 to -a 2 -t 1 3

2+2 as indicated above. Accordingly, we have

2 2 2
k2/3 + T2/2 = R(2,3.2,3) + k 2 + t1 + 2 _ 2tl1 - la 2 (D.11)

which is (31f).

From the first alternatives in (13ab), we form

q = p ~ +A 'U~ +A ju~
1/2 rst rs t rs t

rst r s t r s t
a2/1 A rs + rstP + rsp t

Due to (18a)-l and (18b)-2, the second term giving a1/2 is k1 k while due to

(19a) and (18a)-2, the third term is a +t F . Due to (18a)-2 and (18b)-1, the
2 2 1

second term giving a2/ 1 is t1; while due to (19a) and (18b)-l, the third term
2

is -a +t 83. Next, the indices s and t in the first term giving a2/1 are

interchanged, and the entire equation Is subtracted from that giving a1/2. Upon

considering the type of (D.5), the first term of the resulting equation is
2 2

R(1,2,1,2); the other terms are obtained by subtracting t2-a2+t 83 from k k
2

+a 2 +t3 as indicated above. Accordingly, we have
21 3

a1/2 - 2/a 21 - t2 + a2 + Or2 (D.12)1l/2 - 2/1 1 (,212+kl 2  1 t 1 2

which is (31g).

From the first alternatives in (13a) and (17), we form

rst r st rst
1/3 rst rs t rs tr t rs t rs t

Pr s t + P r sA + 'U st

3/1 rst rs t rs t

Due to (18a)-1 and (18b)-3, the second term giving ai/3 is -k1 T2  while due to

(19a) and (18a)-3, the third term is e3 a2 -T1 E3. Due to (18a)-3 and (18b)-I.

the second term giving e3/1 is -t1T1 ; while due to (19a) and (18c)-I. the third

term is -k IaI-t 1 2* Next, the indices s and t in the first term giving 3/1

are interchanged, and the entire equation is subtracted from that giving 1/3.

Upon considering the type of (D.5), the first term of the resulting equation is

R(1,2.l,3)=R(1.3,1.2). where the type of (D.4c) has been included: the other

terms are obtained by subtracting -t1 T1 -k o1 -t1 a2 from -k17 2 +e3 F2-r1 83 as

indicated above. Accordingly, we have
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a1/3 - 63/1 = R(1,3,1,2) - k17 2 + t171 + kIa 1 + t 1a2 - 71 63 + 63 r2 (D.13)

which Is (31h).

Finally, from the first alternatives in (13b) and (17). we form

A r s t A r s t + r s t
2/3 rst rst rs t

A rst rst rst63/2 = 5rtL L +A rsL h + rs

Due to (18a)-2 and (18b)-3, the second term giving a2/3 Is -t172; while due to

(19a) and (18b)-3, the third term is -3o- T2 63
. Due to (18a)-3 and (18b)-2,

the second term giving e3/2 is -k2 r1 ; while due to (19a) and (18c)-2, the third

term is -t1  -k2 a2 * Next, the indices s and t in the first term giving 63/2

are interchanged, and the entire equation is subtracted from that giving a2/3.

Upon considering the type of (D.5), the first term of the resulting equation is

R(l,2,2.3)=R(2,3,1,2), where the type of (D.4c) has been included: the other

terms are obtained by subtracting -k2 TI-t 1 a1 -k2 a2 from -t1 T2 -F 3 a1 -T263 as

Indicated above. Accordingly, we have

a2/3 - 63/2 = R(2,3,1.2) + k271 - t1T2 + t1a 1 + k2a 2 - 72&3 - F3a 1  (0.!4)

which is (311).

D.2 Leg Derivatives of Curvatures Developed Using Surface Vectors

We now re-derive equations (31a.d.g) using the surface vectors A and g,

thus providing verifications for the formulas developed above. In this task, we

make use of the covariant R-tensor in two dimensions. Equations (D.la-d) remain

valid provided the Roman indices are substituted for by the Greek indices

(restricted to the numbers 1.2), such as In

R aft = -RT , R ,75 ' (D.15a,b)

R o( R ap' R ao(5'R 6pa'(D. 15c~d)

As In (5.16) of (H], the (_ovariant R-tensor in a two--dimensional space, i.e.. a

surface, serves in the definition of K. the Gaussian curvature of the surface:
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Upon using the first equations of (2.32) In [HI, namely

-_ Aa A-u

and taking advantage of (D.15a,b,d), the Gaussian curvature becomes

K = R g' A2 'g , (D.16)

which is the outcome obtained by a different route in §5-20 of [H]. When

working In two dimensions, we do not use the convention of the type (D.3).

Equation (8.31) In [H] yields the Gaussian curvature of a surface embedded

in a general space as

K = kk 2 - t2 + C (D.17a)

1:2 1

where, according to (5.25) in [H], we have

C R Au gr AS It =R(l 2.1.2) (D.17b)urst

Clearly, in the flat space we recover the familiar formula

2K = klk 2 - t 1  (D.17c)

Upon considering (D.16) and (D.17a,b), it follows that

aR A A7 6  2
R a r A = R(l,2.1.2) + kIk2 - tI  (D.18)

which Illustrates why the convention (D.3) cannot be used in conjunction with

the Greek indices.

Similar to the three-dimensional case, for the surface one writes according

to (5.22) in [HI:

6 4- =R A =R a A (D. 19)

In reference to (D.2), certain leg derivatives can be obtained also in terms of

surface coordinates, as in

k1/2 = (k )tU = (k )7 (D.20)

Further, from (6.07) In [H] we have

r a r
x v =v (D.21)
a



where v is a surface vector; In the present context it will be either A or p.

Finally, equation (6.22) in [Hi. namely

b -b = -RuVst x rx t (D.22)

a~r arO urst a Or'

will prove useful when contracted three times with a permutation of the surface

vectors A and p. If we contract (D.22) with AaA P, in conjunction with (D.21)

we obtain

(b Or - b Tp)Aa j7 = -R(3,,,2) = R(l,3,1,2) (D.23a)

while if we contract it with paAIr we obtain

(b r - b )pA*A 0 = -R(".9,l,2) = R(2.3.1.2) (D.23b)

The initial equations serving for the derivation of (31a,dg) in two

dimensions are (13a')-(15'). The development involves (D.18.19) and (D.23a.b)

above, as well as (13a')-(15') and (18a',b'), where (19a') could be used instead

of (13a',b'). Keeping in mind surfacp expressions of the type (D.20). from

(14a') and the first alternative in (15'). we form

k 1/ b a A A.L + b apA rA% + b aA A
1/ A T a at1/ = baT A PA + b a r b A A r

Due to the second formula in (18a'), symbolized by (18a')-2. and to the second

alternative in (15'). the second term giving k1/2 is t while due to (18a')-2

and the first alternative in (15'), the third term is again t1 a2. Due to

(18a')-I and (14b'), the second term giving t1/1 is k2 a while due to (18b')-l

and (14a'), the third term is -k1 a1. Next, the indices B and r in the first

term giving t1/1 are interchanged, and the entire equation is subtracted from

that giving k /2. Upon considering (D.23a), the first term of the resulting

equation is R(i,3,1,2); the other terms are obtained by subtracting k2 a -k a

from 2t1a2 as indicated above. Accordingly, we have

k1/2 - t1/1 = R(0.3,1.2) + (kl-k2)al + 2ta (D.24)

the same as (D.6), thereby confirming (31a). We note that the identity of (D.6)

and (D.24) emerges In the last step of two different and independent approaches.
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Similarly, from the second alternative in (15') and from (14b'). we form

aa~r
b 1 b a + b UAbr g+ b

2 a ~r a+ an
k /1 baO A9A +b aAAr b (ZA9T

Due to (18b')-2 and (14a'), the second term giving t1 /2 is -k1 a2; while due to

(18a')-2 and (14b'), the third term Is k2 a2 . Due to (18b')-1 and the first

alternative in (15'), the second term giving k2/1 is -t1 a while due to (18b')-

1 and the second alternative In (15'), the third term is again -t1 a .V Next, the

indices 0 and 7 in the first term giving k 2/ are interchanged, and the entire

equation is subtracted from that giving t1 /2. Upon considering (D.23b), the

first term of the resulting equation is R(2,3,1,2); the other terms are obtained

by subtracting -2t 1a I from -k Io2 +k 202 as indicated above. Accordingly, we have

t1/2 - k2/1 = R(2,3,1.2) - (k -k2)o 2 + 2t1a1 (D.25)

which Is the same outcome as (D.9). Thus, (31d) is confirmed by different and

independent means.

Finally, from the first alternatives in (13a',b'), we form

O =A aAr + a ,atPr a Aa1/2 aPT g 9 apAg 'r a r

a2/1 = - P + a T 9 +7 ap A T

Due to (18b')-2 and A apA=O (upon considering Hotine's equation 3.19 in two

dimensions), the second term giving a1/2 is 0; while due to (18a')-2 and the
2

first alternative in (13b'). the third term Is 02. Due to (18b')-1 and
A A=0, the second term giving 02/1 is 0: while due to (18b')-l and the first

2

alternative in (13a'), the third term is -oI . Both these third terms can

equivalently be obtained If (19a') is used Instead of (13a',b'). Next, the

indices 0 and T In the first term giving a2/, arc interchanged, and the entire

equation Is subtracted from that giving O/2. Upon considering (D.19) and

(D.18), the first term of the resulting equation is R(l.2,1,2)+k k 2-t1 the
2 2 11

other terms are obtained by subtracting -a1 from 02 as indicated above.

Accordingly, we have

=R(,2l,2+k ~ 2  02 2
a1/2 - a2/1 1 R(1,2,1,2) + k 1 12 1 1 + C (D.26)

which Is the same outcome as (D.12), confirming (31g) by Independent means.
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